TABLE OF CONTENTS
TABLE OF CONTENTS

SECTION PAGE

I. Introduction 1
II. Procedures 1
III. General 6
IV. Capacity 7
V. Sewage Lift Station Site 8
VI. Force Main 9
VII. Lift Station 10
VIII. Electrical and Controls 13
IX. Emergency Power 13
X. Telemetry Equipment 15

APPENDIX A

Sample Design Calculations

TABLES

Table 1 Related District Standard Drawings

DETAILED PROVISIONS

Refer to the latest Standard Detailed Provision Sections located at the following web site

Section 01000 General Safety Requirements
Section 01430 Maintenance Manual Requirements
Section 02051 Temporary Sewage Lift Station Demolition
Section 02201 Construction Methods & Earthwork
Section 02252 Control Density Fill
Section 02513 Asphalt Concrete Paving
Section 03150 Formwork for Cast-in-Place Concrete
Section 03200 Reinforcing
Section 03300 Cast-in-Place Concrete
Section 04220 Concrete Masonry Units
Section 09811 Chemical Resistant Coatings
TABLE OF CONTENTS
(Continued)

Section 11200 Small Submersible Sewage Lift Station with Emergency Standby Power Generation
Section 11210 Small Submersible Sewage Lift Station without Emergency Standby Power Generation
Section 13123 Electrical Panel Sunshade Structure
Section 15105 Plug Valves
Section 16040 Electrical Short Circuit/Coordination Study, Arc Flash Hazard Study, and Field Testing of Electrical System

Refer to the latest Standard Detailed Provision Sections located at the following web site

<table>
<thead>
<tr>
<th>SMALL SEWAGE LIFT STATION STANDARD DRAWINGS (11 x 17)</th>
<th>DRAWING</th>
<th>FILE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title Sheet</td>
<td>G-1</td>
<td>D-41882</td>
</tr>
<tr>
<td>Typical Site Plans</td>
<td>C-1</td>
<td>D-41883</td>
</tr>
<tr>
<td>Wet Well Plans, Section, and Detail (120 gpm to 260 gpm capacity)</td>
<td>M-1A</td>
<td>D-41884</td>
</tr>
<tr>
<td>Wet Well Plans, Section, and Detail (260 gpm to 500 gpm capacity)</td>
<td>M-1B</td>
<td>D-41885</td>
</tr>
<tr>
<td>Miscellaneous Wet Well Details and Sections</td>
<td>M-2</td>
<td>D-41886</td>
</tr>
<tr>
<td>Wet Well Structural Plans, Sections, and Details (120 gpm to 260 gpm capacity)</td>
<td>S-1A</td>
<td>D-41887</td>
</tr>
<tr>
<td>Wet Well Structural Plans, Sections, and Details (260 gpm to 500 gpm capacity)</td>
<td>S-1B</td>
<td>D-41888</td>
</tr>
<tr>
<td>Electrical Panel Sunshade Structure Foundation Plan, Elevation, and Section</td>
<td>S-2</td>
<td>D-41889</td>
</tr>
<tr>
<td>Electrical Symbols, Abbreviations, and Lighting Fixture Schedule</td>
<td>E-1</td>
<td>D-41890</td>
</tr>
<tr>
<td>Single Line Diagram (With Standby Generator), MCC Plan and Elevations</td>
<td>E-2A</td>
<td>D-41891</td>
</tr>
<tr>
<td>SMALL SEWAGE LIFT STATION STANDARD DRAWINGS (11 x 17)</td>
<td>DRAWING</td>
<td>FILE</td>
</tr>
<tr>
<td>--</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>Single Line Diagram (Without Standby Generator), MCC Plan and Elevations</td>
<td>E-2B</td>
<td>D-41892</td>
</tr>
<tr>
<td>Control Diagrams</td>
<td>E-3</td>
<td>D-41893</td>
</tr>
<tr>
<td>RTU Status/Alarm Signal Wiring Diagrams</td>
<td>E-4</td>
<td>D-41894</td>
</tr>
<tr>
<td>MCC and Sunshade Grounding Plan and Service Pedestal Detail</td>
<td>E-5</td>
<td>D-41895</td>
</tr>
<tr>
<td>Miscellaneous Details</td>
<td>ME-1</td>
<td>D-41896</td>
</tr>
<tr>
<td>Typical Temporary Small Lift Station Demolition Site Plan</td>
<td>D-1</td>
<td>D-41897</td>
</tr>
<tr>
<td>Demolition Plan, Section, and Details</td>
<td>D-2</td>
<td>D-41898</td>
</tr>
</tbody>
</table>
I. Introduction

Sewage collection within the District service area shall be provided by the construction of gravity sewers, except where it is demonstrated unfeasible and pumping is required. If a sewage lift station is proposed, it shall be the developer's responsibility to provide the services of a licensed civil engineer to demonstrate to the District that a sewage lift station is the most feasible method for sewage conveyance.

These guidelines present basic concepts and general criteria for small sewage lift station facilities with capacities not exceeding 500 gpm. Each lift station shall be reviewed and approved by the District from concept through design, construction, and start-up. Detailed Provision Sections 11200, 11210, and 13123 and the Standard Drawings are provided to present lift station construction requirements. Detailed Provision Section 02051 and the Standard Drawings are provided to present demolition requirements for temporary lift stations. The District reserves the right to modify and supplement these guidelines, specifications, and drawings to require additional facilities, depending upon the specific project location, limitations, and changes in government regulations and standards.

II. Procedures

Prior to the District's approval and acceptance of a temporary or permanent sewage lift station, developer and developer's engineer shall comply with the following requirements:

A. Design and Construction of Temporary or Permanent Small Sewage Lift Stations

1. Developer's engineer shall acquire and review these guidelines; Detailed Provision Sections 11200, 11210, and 13123, and other Detailed Provision Sections referenced in these guidelines; and the Standard Drawings.

2. Developer and engineer shall request a concept meeting with District staff to demonstrate the need for a sewage lift station and to review requirements, guidelines, criteria, right-of-way, and location of specific project facilities. District will provide list of approved materials.
3. Developer shall submit all documentation requested by the District in order to demonstrate the need for a sewage lift station, including the following:

 a. Complete calculations for sewage flows within the entire drainage area tributary to the lift station.

 b. Preliminary drawings showing planned gravity collection system within the lift station drainage area, including point(s) of connection to existing or future gravity interceptor sewers, if any.

 c. Determination whether the proposed lift station will be temporary or permanent.

 d. Calculations establishing the required lift station capacity for initial planned development and ultimate development.

 e. Preliminary drawings showing the proposed alignment for the lift station force main including point of discharge.

4. If the District concurs that a lift station is required, developer's engineer shall submit design calculations, drawings, and specifications for District approval as follows:

 a. Preliminary design calculations and information including required capacity, hydraulic analyses, pump selections, and system curves, and preliminary site layout. Sample design calculations are included in Appendix A. Depending upon location, the District will establish site improvements such as masonry block wall or chain link fence, asphalt concrete or concrete pavement, lighting, access, etc. District will provide specialty specifications to be used.

 b. Submit 75% complete construction drawings.

 c. Submit legal plat and description for proposed property in fee title and/or easements for lift station site and force main (if applicable). Legal plats and description shall conform to EMWD's standards. Contact District's Right-of-Way Department for details. Note, final plans will not be signed until this information is received and reviewed for conformance to site plan.
Submit final design and 100% complete construction drawings. As a minimum, construction drawings prepared by the developer shall include a title sheet and detailed site plan. The title sheet shall include a summary of project specific requirements and data (see sample title sheet provided herein). As a minimum, the lift station site plan shall show the following:

- Location of all proposed facilities (referenced to site property lines or easement boundary).

- Location of gravity sewer and manholes. Provide bearings and distances along each gravity sewer segment shown on the Site Plan. Provide invert elevations (inlet and outlet) at each manhole. Gravity sewers shall be labeled with pipe size and material. Manholes shall be labeled with size and Standard Drawing reference.

- Location of emergency bypass manhole directly adjacent to wet well. All collection sewers entering the lift station site shall terminate at the emergency bypass manhole. Emergency bypass manhole shall be provided with a 36" diameter fiberglass reinforced plastic (FRP) manhole cover. Provide invert elevations at bypass manhole inlet and outlet.

- Location of force main and emergency bypass connection. Provide bearings and distances along each force main segment shown on the Site Plan. Provide center grade elevations at each horizontal and vertical point of inflection (HPI and VPI). Force main shall be labeled with pipe size, material, and class.

- Location of each electrical conduit, pull box, junction box, and SCE service and transformer. Refer to Conduit Schedule on Electrical Drawings for conduit destinations. Label all conduits shown in the Conduit Schedule.
• Location of all site improvements, including site fencing or masonry block walls and access gate(s). Where masonry block walls are selected for site security, label top of wall and top of footing for each wall segment. Walls shall be constructed level. Walls shall step as required to provide a minimum of 6'-0" height from outside finished grade. Provide a construction detail for masonry block wall and concrete footing showing all dimensions, reinforcing steel, block type, and grouting requirements. Provide details for site fencing and access gates if District standard fencing and gates are not used.

• Finished grades for all proposed facilities and site improvements. As a minimum, grades (elevations) shall be provided for all concrete slabs and roofs, asphalt concrete paving (along pavement edges and flow lines, adjacent to concrete slabs and roofs, etc.), masonry block walls and footings, and finish grading adjacent to site improvements.

• Location of microwave and radio communications antenna and tower for District SCADA communications. Developer shall coordinate with District during final design so that District can survey the site to determine if an antenna tower will be required based on the site's location. District will provide required antenna mounting height and details for antenna tower for developer's engineer to include on Construction Drawings. Developer will pay all costs for construction of antenna.

5. Prior to construction submit signed final design "approved for construction" SCE service plan to District.

6. Prior to construction (installation), shop drawing submittals for all proposed equipment and materials shall be submitted to the District for approval.

7. Construction of facilities shall be in accordance with approved construction drawings and District specifications. District will provide inspection of facilities, witness start-up, and provide final inspection of facilities. District staff shall receive final operation and maintenance manuals for all equipment a minimum of 10 working days prior to receiving training for station operation and equipment operation. A factory trained equipment manufacturer's representative shall provide the training.
B. Demolition of Temporary Small Sewage Lift Stations

Plans for temporary lift stations shall include construction drawings and demolition drawings. Submittal of demolition documents (drawings and specifications) for District review shall coincide with submittal of the corresponding construction documents. Procedures required for District approval of temporary lift station demolition documents are as follows:

1. Developer's engineer shall acquire and review Detailed Provision Section 02051 and the Standard Drawings.

2. Developer and engineer shall request a concept meeting with District staff to discuss future diversion of sewage flow from the temporary lift station to a gravity sewer, de-activation and demolition of lift station facilities, and the anticipated schedule for performing the work.

3. Submit 75% complete demolition drawings and specifications (if requested by District).

4. Submit 100% complete demolition drawings. As a minimum, demolition drawings prepared by the developer shall include a detailed site plan. A sample demolition site plan is included herein for reference. The demolition site plan shall show the removal of all facilities not addressed by the Standard Drawings. As a minimum, the site plan shall show demolition of site improvements including fencing, walls, gates, paving, driveways, lighting, electrical, and drainage facilities.

5. Submit 100% complete demolition checklist per Detailed Provision Section 02051, Exhibit A.

6. Submit a detailed cost estimate for performing the lift station demolition work.

Demolition requirements shown on the Standard Drawings, and contained in Detailed Provision Section 02051 represent minimum District requirements. Depending upon the proposed re-use of the temporary lift station site, developer may elect to require more extensive demolition, including the complete removal of all below grade facilities.
III. General

A. Raw sewage lift stations shall be designed and constructed in accordance with District guidelines herein, District standards (drawings and specifications), good engineering practice, applicable government regulations, Riverside County Health Services Department and State Water Resources Control Board, Division of Drinking Water (SWRCB DDW), Cal OSHA, Standard Specifications for Public Works Construction (Standard Specification), California Building Code, National Electric Code, Uniform Fire Code, and as approved by the District.

B. Facilities shall be designed by a licensed civil engineer, registered in the State of California, experienced in the design of wastewater lift station facilities. Prior to commencing design, the Engineer shall submit to the District a statement of qualifications showing that he has designed a minimum of five sewage lift stations. The statement of qualifications shall include the name, client, capacity, and construction cost for each sewage lift station. Drawings and specifications shall be submitted for review and approval by the District. Soils investigation shall be performed for the lift station site and related interceptor sewer and force main. Sewer, force main, and lift station construction drawings shall be submitted simultaneously; sewer and force main shall include plan (1"=40') and profile (vertical 1"=4', horizontal 1"=40'), and lift station shall include site plan and standard drawings showing structural, mechanical, and electrical plans, sections, and details with project specific requirements. Sewer and force main plans shall be prepared in accordance with the District's "Guidelines for Sewer System Plans".

C. All costs of temporary facilities shall be borne by the developer.

D. Upon approval and acceptance by the District, facilities shall be owned by the District. Ownership shall include the lift station site and right-of-way for force main and gravity sewers. Gravity sewers and force main shall be constructed on District property, District right-of-way, or within public right-of-way whenever possible. Easements for gravity sewers and force main will only be considered under special conditions. All right-of-way and easement documents shall be submitted and approved by District prior to approval of the construction drawings. All right-of-way and easement documents shall be conveyed to the District and recorded prior to acceptance of facilities.
E. Prior to completion of the facility and District acceptance, complete records shall be furnished to the District including:

1. As-built record drawings.
2. Final approved shop drawings and submittals for all equipment and materials.
3. As-built electrical and control diagrams.
4. Minimum three copies of Operation and Maintenance Manuals for all equipment.
5. District staff training for station operation and equipment operation and maintenance.
6. Right-of-way, grant deed, and easement records.
7. All construction and operating permits.

IV. Capacity

A. The theoretical calculated peak flow shall be based on the development to be serviced with consideration of the entire drainage area and master planned facilities. The design flow shall be determined by increasing the theoretical calculated dry weather peak flow determined from entire drainage area by 20% (i.e. peak flow x 1.20 = design flow). Pumping units and wet well size shall be selected based on the design flow. Flows shall be provided for initial and ultimate conditions. If necessary, lift stations shall be located to maximize sewage collection for the entire drainage area and shall conform to the District's Wastewater Master Plan. Lift station pumping capacity may be dictated by minimum acceptable force main size and velocity criteria herein.

B. Where Master Plan facilities have not been established, the developer shall be responsible to prepare wastewater flow projections for the drainage area.

C. Hydraulic calculations and system/pump curves for pump sizing and required capacity shall be submitted for both initial and ultimate peak flows. System curves shall be developed for friction coefficients of C=120 and C=140. System curves shall include minor friction losses (i.e. fittings and valves in discharge piping at wet well and fittings in force main). Pumps shall be selected based on friction coefficient of C=140. Developer's engineer shall select a minimum of three District-approved pump manufacturers and plot C=120 and C=140 system curves on each pump curve.
D. Downstream sewers shall be evaluated to ensure adequate capacity is available for receiving lift station sewage flow.

V. **Sewage Lift Station Site**

A. Site shall be of adequate size to operate, maintain, and repair the lift station facilities incorporating access for truck cranes and sewer cleaning trucks (Vactor trucks).

B. All permanent sewage lift station sites require the parcel to be deeded to the District. Before construction, a Grant Deed with legal description and plat map must be prepared, approved, and recorded by the District. Refer to District typical layout drawings for plat map preparation.

C. As a minimum, site shall be secured by commercial grade 6-foot high chainlink fence with 3-strand barbed wire or a 6-foot high masonry block wall. Access gate(s) shall include minimum 20-foot wide double gate for vehicles. Chainlink fencing and gates shall be provided in accordance with District Standard Drawing D-672.

D. Entire site shall be provided with asphalt concrete pavement or concrete pavement, and adequate drainage facilities. Access driveway(s) to the site shall be 20-foot wide (minimum) and constructed of asphalt concrete pavement or reinforced concrete pavement. Asphalt concrete pavement or reinforced concrete pavement shall be designed to accommodate AASHTO H20-44 vehicle loading.

E. If required by the District, based on proximity of the facility to other public facilities, residences, or buildings, landscaping shall be provided in accordance with the surrounding area.

F. Potable water shall be provided to the site by hose bibs with antisiphon devices, water meter, and a backflow prevention device as approved by the District and SWRCB DDW.

G. All lift stations shall have a street address sign affixed to the fence at the front of the station.

H. Site shall be provided with a lighting system designed to minimize off site impacts while maintaining functionality for maintenance personnel working on lift station components. As a minimum, each site shall be provided with an "area light" activated by a photocell and a 150W "work light" activated by a manual switch located in the Main Control Panel. "Area light" shall comply with County of Riverside Ordinance Number 655 - Regulating Light Pollution.
I. Odor control components include: concrete slab for emergency shower and eyewash station, concrete pad for District furnished chemical storage tank, 120v receptacle for District furnished chemical feed pump, and conduit sleeve from receptacle stanchion to wet well. Emergency shower and eyewash station slab shall be located on the side of the chemical tank pad where the chemical delivery truck will be logically positioned.

J. If required by the District, based on the location of the facility, a microwave and radio communications tower shall be provided for District SCADA communications at developer's expense.

VI. Force Main

A. Force main size (diameter) shall be based on the following:

1. Lift station design flow rate (one pump operating) with minimum velocity of 3 fps and maximum velocity of 6 fps.

2. Minimum size shall be 4-inch inside diameter. Where 4-inch mains are required, two (2) parallel pipelines shall be constructed for system reliability. Each force main shall be provided with the necessary valves and fittings to allow operation of either force main or both force mains.

3. Where a single 4-inch force main is inadequate to convey the peak flow rate (i.e. force main velocity exceeds maximum allowable velocity), the next larger size pipe diameter shall be used.

4. Where force main length exceeds 6,000 L.F., two (2) parallel pipelines shall be constructed for system reliability. Each force main shall be provided with the necessary valves and fittings to allow for operation of either force main or both force mains.

B. Material shall be PVC per ANSI/AWWA C900 (minimum DR-18). Pipeline shall be constructed using restrained joints per District Standard Drawing B-663.

C. Pipeline profile shall avoid intermediate high points if feasible. All high points shall be provided with combination sewage air and vacuum valve installation and special corrosive resistant pipeline materials.

D. Onsite pipe cover shall be minimum 36-inches.
E. Separation from water lines shall be in accordance with SWRCB DDW. Additionally, a minimum 10-foot horizontal clearance shall be provided from site walls, site fencing, electrical facilities, storm drain facilities, and gravity sewer.

F. Where force main connects to a new or existing discharge manhole, the discharge manhole shall be lined per Standard Detailed Provision Section 09811 at developer's expense. The District may require multiple manholes be lined at developer's expense.

VII. Lift Station

A. Raw sewage lift station shall be the submersible type with 100% redundancy, electrical service, switchgear, emergency power (if required by the District), and appurtenances. Standard Drawings M-1A, M-1B, M-2, and ME-1 are provided to present equipment and piping plans, sections, and details for the lift station.

B. Raw Sewage Pumps

1. Number of pumps furnished shall provide complete redundancy. Minimum of two identical pumps each sized for 100% station capacity shall be installed. Typically, constant speed pumps will be provided; however, discharge to the downstream system may require use of variable speed drives.

2. Pump Requirements

 a. Raw sewage non-clog submersible pumps. Pump impellers shall be enclosed single port, recessed vortex, or grinder type. The specific pump impeller type to be used for the project will be determined by the District based on application and availability.

 b. Minimum 4-inch discharge.

 c. Ability to pass minimum 3-inch diameter sphere.

 d. Maximum 1800 rpm explosion-proof submersible motor with moisture and temperature sensors.

 e. Motor and cooling rating suitable to run dry for 15 minutes without damage to the pump.

 f. UL or Factory Mutual explosion-proof rating without being submerged.
g. Constructed of corrosion resistant materials and provided with corrosion resistant factory coating.

h. Acceptable manufacturers are Essco, Wilo-EMU, Fairbanks-Nijhuis, Wemco Flowserve, Xylem-Flygt, and ABS.

i. Prior to acceptance, pump tests shall be performed to verify pump curves and system head curves.

3. Pump Mounting and Removal

a. Provide rail-type guide system with intermediate supports to allow pump removal without removal of discharge piping or entering the wet well. All materials to be 316 stainless steel.

b. Provide 316 stainless steel cable or chain fastened to each pump. The District will utilize their crane truck for removal of pumps.

c. Electrical cable(s) shall be spliced at a junction box located 30-inches above wet well roof and meet all provisions of the NEC.

4. Spare parts shall include one set of seals and bearings.

C. Wet Well Requirements

1. Class IV reinforced concrete pipe (RCP) per ASTM C76 with two circular reinforcement cages (quadrant or elliptical cages will not be allowed) and flush bell and spigot joints. Bell and spigot joints shall be provided with rubber gaskets and shall be suitable for a hydrostatic head of 50 feet per ASTM C361. Wet well shall also include reinforced concrete base and cover. Wet well reinforced concrete base shall be placed on a 12-inch thick mat of crushed miscellaneous base per SSPWC Section 200-2.4, Fine Gradation. Interior concrete surfaces (including wall and roof) shall be coated with a field applied 100% solids epoxy lining system by Carboline, Sauereisen, or Tenemec per District Standard Small Submersible Sewage Lift Station Specifications. Wet well bottom shall be provided with concrete fillets sloping towards the pumps.

2. Wet well shall be sized based on maximum pump motor cycling time of six starts per hour at 1/2 design capacity and to provide adequate spacing for installation of two pumping units (see Table on Standard Drawing G-1 for wet well size versus flow capacity).
3. Concrete roof shall have a hatch opening (one hatch for both pumps) for pump removal/installation. Hatches shall be all stainless steel construction as manufactured by U.S.F. Fabrication, Flygt, Bilco, or equal, with lockable diamond plate covers, safety chain, spring assisted hinges, and swing-out interior safety grating. Portable temporary handrail system (Railguard 200 by Garlock Safety Systems, or equal) shall be provided around hatch opening.

4. Discharge piping inside the wet well shall be flanged, Schedule 40 316 stainless steel. All stainless steel piping, fittings, and flanges shall be shop welded (field welding not permitted except where noted on District Standard Drawings). All welds shall be pickled and passivated in the shop (pickling paste shall be applied to District approved field welds). Discharge piping shall be designed for a maximum velocity of 6 to 8 feet per second. Discharge piping shall be properly supported with pipe supports.

5. Pipe supports, brackets, and all other equipment and fasteners within the wet well shall be 316 stainless steel.

6. All collection sewers shall join and enter a single manhole just prior to entering the wet well. Only one sewer shall enter the wet well to allow the District to plug influent sewer and bypass around wet well for maintenance and repairs.

D. Pump Discharge Piping Out of Wet Well

1. Discharge from each pump shall exit the wet well below grade, then rise above grade for location of check valves and isolation plug valves.

2. Each pump shall be provided with 150 lb swing check valve (AWWA C508 with bronze trim) and shut-off valves (eccentric non-lubricated plug valve). Sewage combination air and vacuum valves shall be provided at high points.

3. A bypass connection to the force main shall be provided for station bypass with portable pumps.
VIII. Electrical and Controls

A. All electrical equipment shall be in accordance with the NEC and, where applicable, meet all requirements for hazardous locations. Developer shall coordinate with the electrical utility providing electrical service. Station shall be provided with a separate utility transformer and metering section with main circuit breaker. Utility transformer and metering section shall be located in a separate fenced-in area (see Typical Site Plans). Primary power to the station shall be 480 volt, 60 Hz, 3-phase service per utility providers’ standards. Single-phase 120-volt power shall be provided for lights, controls, convenience receptacles, and miscellaneous equipment. Provide a minimum of four spare 20A, 120-volt circuit breakers. All conduit shall be run concealed below grade or in concrete slabs, and shall not impose tripping or maintenance hazards. All exposed conduit shall be pvc-coated rigid steel pipe.

B. Electric switchgear shall be mounted in a NEMA 1 gasketed enclosure (with NEMA 3R wrapper) Motor Control Center with removable buckets, and shall include, as a minimum, main circuit breaker, motor starters with thermal overload protection, selector switch (hand-off-auto), run and fail lights, and elapsed time meter as shown on Standard Drawings E-2A and E-2B. Switchgear shall be General Electric, Eaton/Cutler Hammer, Allen-Bradley, or Schneider Electric/Square D (no substitutes). The MCC doors shall face north or east.

C. Complete controls for automatic pump operation shall be provided per Standard Drawing E-3.

D. An electrical panel sunshade structure shall be provided per Standard Drawing S-2.

E. Separate sunshades shall be provided to protect any items that can deteriorate from exposure to the sun and are not protected by the electrical panel sunshade structure.

F. An electrical short circuit/coordination study, arc flash hazard study, and field testing of the electrical system shall be performed.

IX. Emergency Power

If required by the District, lift station facilities shall include permanent emergency power generation facilities. These facilities shall consist of an engine driven emergency power generator with integral fuel storage tank and an automatic transfer switch. Lift stations not requiring permanent emergency power generation facilities shall be provided with a manual transfer switch that will allow connection of a District portable emergency power generator.
Permanent emergency power generation facilities shall conform to the following:

A. Provide a prefabricated skid-mounted diesel engine driven, radiator-cooled, automatic emergency standby generator to power the lift station during normal power failure.

B. Generator set shall be as manufactured by Olympian (supported by Caterpillar), Caterpillar, Cummins, or Generac.

C. Generator set shall automatically start upon failure of normal power and be sized to operate lighting loads, and both pumping units (duty and standby) with maximum voltage DIP of 20 percent.

D. Generator set shall be provided with a weatherproof sheet metal housing. Exhaust system shall be fully insulated and equipped with a critical grade silencer.

E. Generator set shall be equipped with all sound attenuating equipment, enclosures, and devices necessary to conform with applicable city or county noise ordinances. Design Engineer shall supplement the requirements of Detailed Provisions provided herein (Section 11200) with all generator sound attenuating measures necessary to comply with the applicable noise ordinances.

F. Fuel tank for generator shall be base type mounted with unit. Tank shall be double walled welded steel sized for a minimum of 24 hours of continuous operation at 100% of generator capacity. Tank shall have secondary containment and alarm floats for low fuel and fuel in secondary containment area. Facilities shall meet local fire department criteria. A full tank of fuel shall be provided at developer's expense at the completion of construction.

G. Generator set shall be "pre-certified"/"pre-approved" by South Coast Air Quality Management District (SCAQMD) for emergency standby power service, and shall meet all current SCAQMD air emission regulations.

A Level 3 diesel particulate filter (DPF) verified by California Air Resources Board shall be provided at the developer's expense if required to meet the emission requirements of SCAQMD Rule 1470. Developer's engineer shall determine whether a passive DPF or active DPF will be required. For a passive DPF to be considered, it must operate at exhaust temperatures that are low enough not to require a load bank for regeneration. Developer's engineer shall submit the DPF to the District along with technical data and supporting calculations for review and acceptance.
All SCAQMD permits, including payment of fees for the first year of operation shall be furnished by developer. Permits shall have no less than a 200 hour annual operating limit with no less than 50 hours for maintenance and testing. The SCAQMD permit to construct shall be transferred into a permit to operate prior to acceptance by the District.

H. Generator shall have the highest available tier rating, in accordance with EPA Tier Certification requirements.

I. Automatic transfer switch (ATS) shall be provided to switch from normal utility power to standby emergency power upon normal power fail, and switch back to normal power when restored. ATS shall have indicating lights for normal power, emergency power, and a digital panel indicating volts and amps. Acceptable manufacturers are Olympian, ASCO, or Russelectric.

J. If the District requires the developer to provide a standby generator that is larger than what is necessary to support the proposed lift station equipment (based on future development flows to the lift station), then the developer shall provide a load bank sized to provide the difference between the proposed equipment load and the future equipment load.

X. Telemetry Equipment

District will furnish, install, and program telemetry equipment system, including remote telemetry unit (RTU) to transmit alarm conditions to existing SCADA system. Contractor shall terminate all alarm signals on terminal blocks in the Main Control Panel (MCP) as shown on Standard Drawing E-4. Contractor shall connect from MCP terminal blocks to District furnished RTU terminal block.
APPENDIX A

SAMPLE DESIGN CALCULATIONS
[Page Left Intentionally Blank]
SAMPLE DESIGN CALCULATIONS

SEWER LIFT STATION
TRACT 33691

HYDRAULIC CALCULATIONS

April 11, 2008

Prepared by:

Engineering Company
Address
City, State Zip
Phone / Fax

Engineer's Stamp
DESIGN FLOWRATE

Tract 33691 gross acreage = 59.6 ac
Sewage generation rate = 1,700 gpd/ac
\(Q(\text{avg}) = 101,320 \text{ gpd} \)

Peak Factor = 2.5
\(Q(\text{peak}) = 253,300 \text{ gpd} \)
\(= 176 \text{ gpm} \)

Design safety factor = 20 %
\(Q(\text{design}) = 211 \text{ gpm} \)

Use 4" force main, velocity = 5.4 fps

HYDRAULIC CALCULATIONS

FORCE MAIN LENGTH

Offsite force main from R/W to discharge = 3,065.00 ft
Onsite force main (longest length) from wet well outside wall to R/W = 47.61 ft
Total length = 3,112.61 ft

STATIC HEAD - H(stat)

Minimum Static Head = Force Main High Point - Pump "on" elevation
\(H(\text{stat,min}) = 1343.97 - 1302.27 \text{ ft} \)
\(= 41.70 \text{ ft} \)

Maximum Static Head = Force Main High Point - Pump "off" elevation
\(H(\text{stat,max}) = 1343.97 - 1299.77 \text{ ft} \)
\(= 44.20 \text{ ft} \)

FRICTION LOSSES IN FORCE MAIN - H(f)

Hazen-Williams Formula
\[H_f = \frac{10.44 \left(\frac{Q}{C} \right)^{1.852}}{D^{4.8655}} \times L \]

\(H(f) = \text{friction losses in ft} \)
\(Q = 211 \text{ gpm} \)
\(C = 140 \text{ for design} \)
\(L = 3,112.61 \text{ ft} \)
\(D = 4 \text{ in} \)

Therefore,
\(H(f) = 81.80 \text{ ft} \)
MINOR LOSSES - H(m)

\[H_m = \sum K \frac{V^2}{2g} \]

\[H(m) = \text{minor losses, ft} \]
\[\sum K = \text{sum of minor loss coefficients} \]
\[V = \text{5.4 fps} \]
\[g = \text{gravitational constant} = \text{32.17 fps} \]

<table>
<thead>
<tr>
<th>Description</th>
<th>Quantity</th>
<th>K-value</th>
<th>K-value total</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 degree bend</td>
<td>6</td>
<td>0.3</td>
<td>1.8</td>
</tr>
<tr>
<td>45 degree bend</td>
<td>8</td>
<td>0.2</td>
<td>1.6</td>
</tr>
<tr>
<td>Tee-thru, flanged</td>
<td>3</td>
<td>0.3</td>
<td>0.9</td>
</tr>
<tr>
<td>Plug valve</td>
<td>2</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Tee-branch, flanged</td>
<td>1</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>Wye</td>
<td>1</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Check valve</td>
<td>1</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>Exit Loss</td>
<td>1</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

\[\sum K = 11.1 \]

Therefore, \[H(m) = 4.99 \text{ ft} \]

DESIGN TOTAL DYNAMIC HEAD, TDH

\[\text{TDH} = \text{SUM OF ALL LOSSES} \]
\[= H(\text{stat, max}) + H(f) + H(m) \]
\[= 44.20 + 81.80 + 4.99 = 130.99 \text{ ft} \]

PUMP DESIGN PARAMETERS

\[Q = 211 \text{ gpm} \]
\[\text{TDH} = 131 \text{ ft} \]
SYSTEM CURVE CALCULATIONS

Configuration

Pipe diameter, \(D = \) 4 in

Pipe length, \(L = \) 3112.61 ft

Sum of minor loss \(K \)-values = 11.1

C = 140

Maximum Static Head (ft) = 44.20

<table>
<thead>
<tr>
<th>FLOW, gpm</th>
<th>VELOCITY, fps</th>
<th>MINOR LOSSES, ft</th>
<th>FRICTION LOSSES, ft</th>
<th>TOTAL DYNAMIC LOSSES, ft</th>
<th>TOTAL DYNAMIC HEAD, ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>44.2</td>
</tr>
<tr>
<td>25</td>
<td>0.6</td>
<td>0.07</td>
<td>1.57</td>
<td>1.64</td>
<td>45.8</td>
</tr>
<tr>
<td>50</td>
<td>1.3</td>
<td>0.28</td>
<td>5.68</td>
<td>5.96</td>
<td>50.2</td>
</tr>
<tr>
<td>100</td>
<td>2.6</td>
<td>1.12</td>
<td>20.51</td>
<td>21.63</td>
<td>65.8</td>
</tr>
<tr>
<td>125</td>
<td>3.2</td>
<td>1.75</td>
<td>31.00</td>
<td>32.75</td>
<td>76.9</td>
</tr>
<tr>
<td>150</td>
<td>3.8</td>
<td>2.52</td>
<td>43.45</td>
<td>45.97</td>
<td>90.2</td>
</tr>
<tr>
<td>175</td>
<td>4.5</td>
<td>3.43</td>
<td>57.81</td>
<td>61.24</td>
<td>105.4</td>
</tr>
<tr>
<td>200</td>
<td>5.1</td>
<td>4.48</td>
<td>74.03</td>
<td>78.51</td>
<td>122.7</td>
</tr>
<tr>
<td>211</td>
<td>5.4</td>
<td>4.99</td>
<td>51.74</td>
<td>86.73</td>
<td>130.9</td>
</tr>
<tr>
<td>225</td>
<td>5.7</td>
<td>5.67</td>
<td>92.07</td>
<td>97.74</td>
<td>141.9</td>
</tr>
<tr>
<td>250</td>
<td>6.4</td>
<td>7.00</td>
<td>111.91</td>
<td>118.91</td>
<td>163.1</td>
</tr>
<tr>
<td>275</td>
<td>7.0</td>
<td>8.48</td>
<td>133.51</td>
<td>141.99</td>
<td>186.2</td>
</tr>
<tr>
<td>300</td>
<td>7.7</td>
<td>10.09</td>
<td>156.86</td>
<td>166.94</td>
<td>211.1</td>
</tr>
</tbody>
</table>

C = 120

Maximum Static Head (ft) = 44.20

<table>
<thead>
<tr>
<th>Flow, gpm</th>
<th>Velocity, fps</th>
<th>Minor losses</th>
<th>Friction losses</th>
<th>Total Dynamic Losses</th>
<th>Total Dynamic Head</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>44.2</td>
</tr>
<tr>
<td>25</td>
<td>0.6</td>
<td>0.07</td>
<td>2.09</td>
<td>2.16</td>
<td>46.4</td>
</tr>
<tr>
<td>50</td>
<td>1.3</td>
<td>0.28</td>
<td>7.56</td>
<td>7.84</td>
<td>52.0</td>
</tr>
<tr>
<td>75</td>
<td>1.9</td>
<td>0.63</td>
<td>16.01</td>
<td>16.64</td>
<td>60.8</td>
</tr>
<tr>
<td>100</td>
<td>2.6</td>
<td>1.12</td>
<td>27.28</td>
<td>28.40</td>
<td>72.6</td>
</tr>
<tr>
<td>125</td>
<td>3.2</td>
<td>1.75</td>
<td>41.24</td>
<td>42.99</td>
<td>87.2</td>
</tr>
<tr>
<td>150</td>
<td>3.8</td>
<td>2.52</td>
<td>57.81</td>
<td>60.33</td>
<td>104.5</td>
</tr>
<tr>
<td>175</td>
<td>4.5</td>
<td>3.43</td>
<td>76.91</td>
<td>80.34</td>
<td>124.5</td>
</tr>
<tr>
<td>200</td>
<td>5.1</td>
<td>4.48</td>
<td>98.48</td>
<td>102.97</td>
<td>147.2</td>
</tr>
<tr>
<td>211</td>
<td>5.4</td>
<td>4.99</td>
<td>108.75</td>
<td>113.74</td>
<td>157.9</td>
</tr>
<tr>
<td>225</td>
<td>5.7</td>
<td>5.67</td>
<td>122.49</td>
<td>128.16</td>
<td>172.4</td>
</tr>
<tr>
<td>250</td>
<td>6.4</td>
<td>7.00</td>
<td>148.88</td>
<td>165.89</td>
<td>200.1</td>
</tr>
<tr>
<td>275</td>
<td>7.0</td>
<td>8.48</td>
<td>177.62</td>
<td>186.10</td>
<td>230.3</td>
</tr>
<tr>
<td>300</td>
<td>7.7</td>
<td>10.09</td>
<td>208.68</td>
<td>218.77</td>
<td>263.0</td>
</tr>
</tbody>
</table>
WET WELL ELEVATIONS AND SET POINTS

GRAVITY SEWER INVERT ELEVATION

Invert elevation at Prop SMH, Sta.16+13.00 = 1305.08 ft
Pipe length to R/W = 70.71 ft
Slope = 1.09 %
therefore, Invert Elev at R/W = 1304.31 ft From manhole center to R/W

Pipe to Emergency Manhole Inlet = 35.68 ft
Slope = 1.09 %
Emrg Manhole Inlet Invert Elev = 1303.92 ft

Through Emergency Manhole = 6.00 ft
Slope = 1.09 %
Emrg Manhole Outlet Invert Elev = 1303.85 ft

Pipe to Wet Well = 7.75 ft
Slope = 1.09 %
Gravity Sewer Wet Well Inlet Elev = 1303.77 ft

PUMP "ON" ELEVATION

Gravity Sewer Wet Well Inlet Invert Elev = 1303.77 ft
Require distance between gravity sewer invert elev and pump "on" = 18 in
= 1.5 ft
Pump "on" elevation = 1302.27 ft

PUMP "OFF" ELEVATION

Design pumps for maximum of 6 starts per hour
Worst case time cycle occurs when flow into wet well equals 1/2 of pump flow

\[t = \frac{4V}{Q} \]

In this case,
\[t = \text{cycle time, min} = 10 \text{ at } 6 \text{ starts per hour} \]
\[Q = 211 \text{ gpm} \]

therefore,
\[V = \frac{Qt}{4} \]
\[V = 528 \text{ gal} \]
\[= 71 \text{ cubic feet} \]
For a 6'-0" diameter wet well,

\[V = \frac{\pi}{4} D^2 H \]

\[
\begin{align*}
D &= 6 \text{ ft} \\
V &= 71 \text{ cubic feet} \\
H &= 2.50 \text{ ft} \\
\text{Pump "on" elevation} &= 1302.27 \text{ ft} \\
\text{therefore,} \\
\text{Pump "off" elevation} &= 1299.77 \text{ ft} \\
\end{align*}
\]

WET WELL INVERT ELEVATION

\[
\begin{align*}
\text{Pump "off" elevation} &= 1299.77 \text{ ft} \\
\text{Distance between "off" and wet well invert} &= 30 \text{ in} \\
&= 2.5 \text{ ft} \\
\text{Wet well invert elevation} &= 1297.27 \text{ ft} \\
\end{align*}
\]
TABLES
TABLE 1
RELATED DISTRICT STANDARD DRAWINGS
Refer to the latest Standard Drawings located at the following web site
(http://www.emwd.org/index.aspx?page=166)

<table>
<thead>
<tr>
<th>Standard Dwg. No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-286B</td>
<td>Trench Backfill (for PVC forcemain)</td>
</tr>
<tr>
<td>B-590</td>
<td>5/8" Meter Service Connection, 1" Copper Tubing</td>
</tr>
<tr>
<td>B-590A</td>
<td>5/8" Service Connection, 1" Copper Tubing</td>
</tr>
<tr>
<td>B-591</td>
<td>1" Meter Service Connection, 1" Copper Tubing</td>
</tr>
<tr>
<td>B-591A</td>
<td>1" Service connection, 1" Copper Tubing</td>
</tr>
<tr>
<td>B-597</td>
<td>Backflow Prevention Assembly Installation Diagram</td>
</tr>
<tr>
<td>B-656</td>
<td>Location Wire Installation</td>
</tr>
<tr>
<td>B-663</td>
<td>Standard Restraint (Tee, Dead End, Bend)</td>
</tr>
<tr>
<td>B-665</td>
<td>Guard & Marker Posts</td>
</tr>
<tr>
<td>D-672</td>
<td>Chain Link Fence Details</td>
</tr>
<tr>
<td>SB-08</td>
<td>Locking Type Manhole Cover & Frame</td>
</tr>
<tr>
<td>SB-30</td>
<td>Reinforced Precast Shallow Manhole</td>
</tr>
<tr>
<td>SB-53</td>
<td>Precast Reinforced Concrete, 48" & 60" I.D. Manhole</td>
</tr>
<tr>
<td>SB-56</td>
<td>Precast Non-Reinforced Concrete, 48" I.D. Manhole</td>
</tr>
<tr>
<td>SB-61</td>
<td>Manhole Cover & Frame</td>
</tr>
<tr>
<td>SB-157</td>
<td>Pipe Zone Bedding for Sewer Pipe</td>
</tr>
<tr>
<td>SB-158</td>
<td>Trench Backfill for Sewer Pipe</td>
</tr>
<tr>
<td>SB-159</td>
<td>Classification of Pipe Zone Bedding for Sewer Pipe</td>
</tr>
<tr>
<td>- - -</td>
<td>Sewer Guideline for Manhole Sizing</td>
</tr>
</tbody>
</table>

*Refer to the latest Guideline Standards located at the following web site: (http://www.emwd.org/modules/showdocument.aspx?documentid=729)
DETAILED PROVISIONS
CONTENTS

PART 1 - GENERAL

- **1.01 DESCRIPTION**
- **1.02 REFERENCE SPECIFICATIONS, CODES, AND STANDARDS**
- **1.03 CONTRACTOR SUBMITTALS**
- **1.04 JOB CONDITIONS**

PART 2 - PRODUCTS

- **2.01 IMPORTED FILL MATERIAL**

PART 3 - EXECUTION

- **3.01 GENERAL**
- **3.02 POLLUTION CONTROL**
- **3.03 PROTECTION**
- **3.04 EQUIPMENT, PIPING, AND APPURTENANCES**
- **3.05 CONCRETE STRUCTURES AND IMPROVEMENTS**
- **3.06 SITEWORK**
- **3.07 EXISTING UTILITIES**
- **3.08 DISPOSAL OF DEMOLISHED MATERIALS**
- **3.09 PATCHING AND REPAIRING**
- **3.10 CLEANING**
- **3.11 SALVAGE**
SECTION 02051
TEMPORARY SEWAGE LIFT STATION DEMOLITION

PART 1 - GENERAL

1.01 DESCRIPTION

A. The Contractor shall furnish all labor, materials, and equipment necessary to perform and complete demolition work specified herein.

B. The Work includes demolition of existing temporary sewage lift station facilities, abandonment of existing force main and gravity sewer, and re-construction of gravity sewer manhole(s). Existing lift station facilities to be removed and disposed, removed and salvaged, or to remain are summarized in Exhibit A attached at the end of these specifications.

C. Contractor shall comply with the requirements of the District, government agencies, and utilities having jurisdiction over the work, such as, but not limited to: work in the public right-of-way (if applicable), hours of work, and removal of utilities.

D. Re-construction of gravity sewer manhole(s) may require work to be performed within the public right-of-way. Contractor shall apply for and procure all permits and licenses, including encroachment permits required by the City or County having jurisdiction over the right-of-way. Contractor shall give all notices necessary and incidental to the prosecution of the work.

It is the responsibility of the Contractor to contact the jurisdictional agency and make himself knowledgeable of their requirements.

E. Demolition shall include the cost of "Final Disposal" of all debris, waste, and rubbish in a manner that complies with all local, state, and federal laws, regulations, and ordinances.

1.02 REFERENCE SPECIFICATIONS, CODES, AND STANDARDS
The Work covered under this Section shall comply with current editions of the following specifications, codes, and standards:

A. District Detailed Provisions – Section 01000, General Safety Requirements

B. California Building Code

C. National Electrical Code
D. State and Federal Occupational Health and Safety Administration (OHSA) Standards

1.03 CONTRACTOR SUBMITTALS
Contractor shall provide submittals in accordance with the General Conditions, Section F - Labor and Construction. Submittals shall include, but shall not be limited to, the following:

A. Demolition Schedule
Prior to commencing demolition activities, Contractor shall submit for District's approval a complete coordination schedule for all demolition work, including shut-off of lift station pumping units, and deactivation and removal of electric power service to ensure uninterrupted sewage conveyance.

B. Encroachment Permit
Where work is required to be performed in the public right-of-way, Contractor shall submit a copy of the encroachment permit obtained from the City or County agency having jurisdiction over the right-of-way.

C. Preconstruction Video
Contractor shall prepare a video recording in the presence of the District's Inspector showing the existing lift station site, lift station facilities, and condition of structures and improvements adjacent to areas of demolition and alteration. Copies of the video recording shall be submitted to the District's Inspector prior to commencing work.

D. Insurance Certificates
Contractor shall not commence work until he has obtained all insurance required under the District's General Conditions, Section F – Labor and Construction. Contractor shall submit all necessary documents to demonstrate compliance with the District's insurance requirements, including Worker's Compensation Insurance Certificate and Certificate of Liability Insurance.

E. Hot Work Permit
Prior to initiating hot work, Contractor shall submit a Hot Work Permit application to the District. Hot work includes, but is not limited to, any work involving grinding, cutting, torching, welding, soldering, brazing, powder-actuated tools and all other similar applications producing a spark, flame, or heat that is capable of initiating fires or explosions.

1.04 JOB CONDITIONS
District assumes no responsibility for actual condition of the existing lift station facilities to be demolished. The Contractor shall visit the site and inspect the existing facilities, to ascertain their condition and impact on demolition activities.
Existing lift station facilities pump raw sewage from the District's gravity sewer collection system. Contractor shall assume that all lift station piping, wet well and associated appurtenances are filled with raw sewage, including grease, grit, and debris. Prior to commencing demolition of lift station facilities, Contractor shall dewater and clean said facilities as necessary and as specified herein.

PART 2 - PRODUCTS

2.01 IMPORTED FILL MATERIAL
All imported fill material shall be select soil material, non-expansive with an expansion index of less than 20, free of vegetative matter and other deleterious substances, granular with a Sand Equivalent (SE) greater than 30, and shall not contain rocks or other irreducible matter with a maximum dimension greater than 4 inches. Fill material shall be approved by the District prior to use onsite.

PART 3 - EXECUTION

3.01 GENERAL

A. Contactor shall not commence with lift station demolition activities until receipt of District’s written direction to proceed. Contractor shall not interrupt sewage conveyance at any time during demolition work.

The first demolition work activity shall consist of diverting sewage from the lift station wet well or onsite bypass manhole to the gravity collection system. Contractor shall reconfigure the diversion manhole to the lift station or onsite bypass manhole to block sewage conveyance to the lift station facilities and open up conveyance to the gravity collection system. Contractor shall maintain continuous conveyance of raw sewage throughout reconfiguring the manhole base.

B. All demolition work shall be completed within 90 days, commencing from the time the new sewer is placed in-service. Prior to commencing demolition work, Contractor shall submit a written request to District for additional time if demolition work is anticipated to take longer than 90 days.

C. Site grading and compaction shall be performed as specified herein. Relative compaction of 95% shall mean soil compacted to a dry density exceeding 95% of the maximum dry density in accordance with ASTM D1577-12. Compaction testing will be provided by the District. However, any costs for retesting of compaction due to the Contractor's negligence shall be paid for by the Contractor.
3.02 POLLUTION CONTROL

A. Water sprinkling, temporary enclosures, chutes, and other suitable methods shall be used to limit dust and dirt rising and scattering in the air. Comply with government regulations pertaining to environmental protection.

B. Water shall not be used when it creates hazardous or objectionable conditions such as erosion, flooding, or pollution.

C. Water contaminated with sediment or hazardous or toxic materials shall not be allowed to run off into the public storm drain system (including street gutters). Such runoff shall be intercepted, collected and disposed of according to existing environmental regulations.

3.03 PROTECTION

A. Contractor shall perform his operations so that existing improvements which have not been designated for demolition are not damaged, including roads and other paved surfaces adjacent to or in the vicinity of the work site. Contractor shall repair and restore any disturbed or damaged private or public improvements which results from his operations (except that which is specifically a part of the Contract Work) to the satisfaction of the District, or the agency having jurisdiction over said improvements, all at the Contractor's expense.

B. Interior and exterior shoring, bracing, or supports shall be provided to prevent sudden collapse of structures to be demolished and to prevent movement, settlement or collapse of adjacent facilities to remain.

C. Existing vegetation, landscaping materials, structures, and appurtenances, which are not to be demolished, shall be protected and maintained as necessary.

D. Provide safeguards, including warning signs, barricades, temporary fences, warning lights, and other similar items that are required for protection of work personnel and public during demolition and removal operations. Maintain fences, barricades, lights, and other similar items around exposed excavations until such excavations have been completely backfilled and no longer constitute a hazard or dangerous condition. Excavations in the public right-of-way shall be completely backfilled or covered with vehicle safety plates at the end of each work day.

E. During demolition activities, Contractor shall protect all nearby existing equipment such as the motor control center and main control panel from dust caused by demolition activities by covering with drop-curtains or other similar methods.
F. Demolition work involving grinding, cutting, torching, welding, or similar applications producing a spark, flame, or heat that is capable of initiating fires or explosions ("hot work") shall be performed in conformance with OSHA 29CFR 1910.252-254 and NFPA 51B at a minimum. Prior to commencing any hot work, Contractor shall obtain a Hot Work Permit from the District and confirm that all fire prevention and protection requirements have been implemented.

3.04 EQUIPMENT, PIPING, AND APPURTENANCES

A. All mechanical and electrical equipment shall be disconnected and removed. Mechanical and electrical equipment to be salvaged for the District is designated in Section 3.11 herein. Equipment and appurtenances not listed therein shall be considered waste and shall be disposed of by the contractor.

B. All equipment, piping, and appurtenances inside the wet well shall be removed. Wet well discharge piping embedded in remaining wet well wall sections (deeper than 5 feet) shall be abandoned in-place. Contractor shall furnish and install blind flanges at the end of the remaining pipe spools.

C. All above grade discharge piping, valves, and appurtenances shall be removed. Vertical pipe risers shall be removed to below grade transition with horizontal piping. Below grade horizontal piping runs deeper than 48 inches shall be abandoned in-place. The appropriate blind flanges, caps, threaded plugs, etc. shall be provided at the ends of all abandoned piping.

Contractor shall flush the sewage force main piping to be abandoned with water, and then fill the piping with control density fill per District Detailed Provisions Section 02252. Contractor shall review the District’s as-built drawings for the existing sewage force main(s) to determine the extent of the filling and conditions affecting same. Contractor shall plug the end of the sewage force main(s) at the discharge manhole to prevent any control density fill from entering the manhole and gravity sewage collection system. Contractor shall provide observation personnel at the discharge manhole during filling operations to ensure the integrity of the force main plug is maintained.

D. All miscellaneous above grade mechanical and electrical appurtenances such as air valves, pipe supports, electrical receptacles, light fixtures, poles, and foundations, shall be removed and disposed.

E. All electrical conductors shall be disconnected from the associated equipment and removed from the conduit. All above grade conduit shall be removed. Vertical conduit risers shall be removed to below grade transition with horizontal conduit. Below grade horizontal conduit runs deeper than 36 inches shall be abandoned in-place. Conduit caps shall be provided at the ends of all abandoned conduit.
F. Voids created by removal of below grade facilities and appurtenances shall be backfilled with select fill material compacted to 95% minimum relative compaction.

3.05 CONCRETE STRUCTURES AND IMPROVEMENTS

A. Demolition shall proceed in a systematic manner, in accordance with all permits and approved submittals.

B. All concrete structures and improvements shall be demolished and disposed. As a minimum, concrete structures and improvements to be demolished include: wet well roof, upper 5 feet of wet well shaft, electrical panel foundation slab, standby generator foundation slab, discharge piping support slab, odor control chemical tank support slab, SCE transformer support slab, below grade electrical pull boxes and vaults, and site lighting pole foundations.

At lift station installations where gravity sewage will no longer enter the site, the onsite bypass manhole shall be demolished, which shall consist of removal of the manhole roof/cone and the upper 5 feet of the manhole shaft.

C. Concrete walls and roofs shall be demolished in sections. Contractor shall provide bracing and shoring as necessary to prevent structure collapse.

D. Prior to commencing lift station wet well demolition, Contractor shall dewater and clean the wet well, and remove all equipment and appurtenances. Contractor shall then remove submersible sewage pumping units, including base elbows, guide rails and support brackets, access stabilizer, float switches and ultrasonic level transducer or bubbler system, discharge piping, pipe supports, and all related items.

Following wet well cleaning and equipment removal, Contractor shall commence wet well demolition. Contractor shall remove wet well roof and upper wet well shaft sections to a minimum depth of 5 feet below existing or ultimate finished grade, whichever is greater. Contractor shall core drill the wet well foundation in 4 places, equally spaced. Each core drill shall be 12-inch diameter. Contractor shall fill the remaining wet well shaft with sand (minimum SE of 30) compacted to 90% relative compaction. The remaining wet well excavation (upper 5 feet or more) shall be backfilled with select fill material and compacted to 95% minimum relative compaction.

E. Unless specified otherwise, footings, foundation walls, below-grade construction and concrete slabs on grade shall be demolished and removed to a depth which will not interfere with new construction, but not less than 24 inches below existing ground surface or future ground surface, whichever is lower. All below
grade boxes, vaults and other underground structures shall be broken up and removed.

F. Below-grade areas and voids resulting from demolition of structures shall be completely filled with select fill material compacted to 95% minimum relative compaction. Prior to filling, below grade areas and voids shall be free of standing water, trash, and debris.

G. Select fill material shall be placed in horizontal layers not to exceed 12 inches in loose depth. Each layer shall be compacted to a minimum of 95% relative compaction.

3.06 SITEWORK

A. All designated site work shall be demolished and removed.

B. Where existing concrete slabs or foundations are to be removed adjacent to remaining improvements, Contractor shall saw concrete to provide square, straight edges.

C. Where onsite asphalt concrete pavement is specified to be removed, Contractor shall remove all asphalt concrete pavement and aggregate sub-base beneath the pavement. Upon removal of asphalt concrete pavement and sub-base, Contractor shall import select fill material as necessary to restore the finished grade to the prior pavement elevations. Fill material shall be compacted to a minimum of 90% relative compaction.

D. After site fill and compaction operations are complete, all site surfaces shall be graded to meet adjacent contours and to provide flow to surface drainage structures. The final surfaces shall be wheel rolled to a smooth, well compacted finished surface.

3.07 EXISTING UTILITIES

A. Electrical power service to the lift station facilities will be terminated by the District. Contractor shall coordinate power service termination with the District and Southern California Edison (SCE). Contractor shall not commence demolition activities related to any electrical equipment until Contractor and District jointly confirm that electrical power to the site has been permanently disconnected.

B. Contractor shall coordinate with SCE the removal of all SCE owned equipment and material, including service meter, transformer, and service conductors. Upon removal of SCE equipment and material, Contractor shall remove the pre-cast concrete support pad for the SCE transformer. Contractor shall remove
vertical conduit risers and elbows, and cap remaining conduit to be abandoned in-place at below grade connection with horizontal conduit run.

C. Water service to the lift station shall be terminated by the District. Contractor shall coordinate water service termination and demolition with the District. Contractor shall remove water service appurtenances as directed by the District. As a minimum, Contractor shall remove service meter, meter box, and reduced pressure backflow device.

D. All exposed onsite water facilities shall be removed, including hose bibs and risers for future water connections. Contractor shall remove vertical pipe risers and cap remaining piping to be abandoned in-place at below grade connection with horizontal piping run.

E. Contractor shall bear all costs, including fees to utility companies and/or other agencies, resulting from demolition work.

3.08 DISPOSAL OF DEMOLISHED MATERIALS

A. Demolition and removal of debris shall be conducted to ensure minimum interference with roads, streets, walks, and other adjacent occupied or used facilities which shall not be closed or obstructed without permission from the District.

B. Debris, rubbish, and other materials resulting from demolition operations shall be removed and disposed of in compliance with all applicable local, state, and federal laws and regulations, all at the Contractor's expense. Demolition debris, rubbish, and other materials shall be removed from the project site as it accumulates and shall not be stored thereon.

C. Burning of removed materials from demolished structures shall not be permitted.

3.09 PATCHING AND REPAIRING

A. The Contractor shall provide patching, replacing, repairing, and refinishing of damaged areas involved in demolition as necessary to match the existing adjacent surfaces, with materials and procedures approved by the District.

B. The Contractor shall repair all damage caused to adjacent improvements and facilities by demolition activities as directed by the District, and at no cost to the District.
3.10 CLEANING

A. During, and upon completion of work, the Contractor shall promptly remove unused tools and equipment, surplus materials, rubbish, and debris from the site. The Contractor shall clean and sweep the affected portions of roads, streets, sidewalks, and driveways daily. At the completion of demolition work, Contractor shall return all adjacent areas to their condition prior to the start of work.

B. Upon removal of all raw sewage, grit, grease, and other debris from the wet well, Contractor shall pressure wash clean the wet well walls and floor.

3.11 SALVAGE

A. All salvageable and non-salvageable items shall be removed and salvaged by the Contractor for the District at the Contractor's expense in accordance with "EXHIBIT A - TEMPORARY SEWAGE LIFT STATION DEMOLITION CHECKLIST."

B. Equipment and material to be salvaged shall be removed in a manner that will cause the least possible damage to same. Contractor shall thoroughly clean the interior and exterior of all salvaged items. Contractor shall handle, store, and protect all salvaged items until they are delivered to the District.

C. Upon approval of the District's Inspector, Contractor shall deliver all salvaged items to the District's Operation Yard at 2270 Trumble Road, Perris, California.
TEMPORARY SEWAGE LIFT STATION DEMOLITION CHECKLIST

<table>
<thead>
<tr>
<th>SEWAGE LIFT STATION ITEM</th>
<th>REMOVE & DISPOSE</th>
<th>REMOVE & SALVAGE</th>
<th>ITEM TO REMAIN</th>
<th>DOES NOT APPLY</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECHANICAL:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Submersible Pumping Units & Appurtenances</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wet Well Discharge Pipe & Fittings</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wet Well Bubbler System or Ultrasonic Level Control System</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wet Well Raw Sewage Bypass (RSB) Pipe & Fittings</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wet Well Access Stabilizer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wet Well Pipe Supports</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raw Sewage Discharge (RSD) Pipe, Fittings & Valves</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Above Grade Pipe Supports</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raw Sewage Force Main (RSF) Piping</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emergency Standby Generator (and Diesel Particulate Filter if so equipped)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnetic Flow Meter and Signal Converter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Odor Control Chemical Storage Tank</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Odor Control Chemical Feed Pump</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emergency Eyewash Station</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water Service Meter & Box</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water Service Reduced Pressure Backflow Device</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water Service Hose Bibs & Risers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bypass Manhole (Cover, Grade Rings, Cone, Shaft – 5' Depth)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Removable Handrail Around Wet Well</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELECTRICAL:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical Service Section or Pedestal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Automatic or Manual Transfer Switch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor Control Center & Main Control Panel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remote Telemetry Unit (RTU) Panel</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Radio Lightning Arrestor Panel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radio Antenna & Support Pole</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical Conduit (Above Grade & Vertical Risers)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conductors (Above & Below Grade)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wet Well Float Switches & Cables</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junction Boxes, Pull Boxes, & Vaults</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCE Transformer Pad</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site Lighting (Fixtures, Pole, & Foundation)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grounding Electrodes & Conductors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Odor Control Receptacle & Guard Post</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SEWAGE LIFT STATION ITEM

<table>
<thead>
<tr>
<th>SELLER LIFT STATION ITEM</th>
<th>REMOVE & DISPOSE</th>
<th>REMOVE & SALVAGE</th>
<th>ITEM TO REMAIN</th>
<th>DOES NOT APPLY</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRUCTURAL:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wet Well Reinforced Concrete Roof & Access Hatch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wet Well Shaft (Upper 5' Minimum)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reinforced Concrete Support Slab for Discharge Piping</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reinforced Concrete Foundation Slab for Standby Generator</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reinforced Concrete Foundation Slab for Electrical Panels</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reinforced Concrete Foundation Slab for Odor Control Chemical Tank</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SITE IMPROVEMENTS:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asphalt Concrete Pavement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concrete Driveway</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chain Link Fencing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Masonry Walls (including Concrete Foundations)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Access Gates (Chain Link or Wrought Iron)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guard Posts at SCE Transformer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concrete Drainage Swales</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storm Drain Piping & Appurtenances</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

END OF SECTION 02051
SPECIFICATIONS - DETAILED PROVISIONS
Section 11200 - Small Submersible Sewage Lift Station with Emergency Standby Power Generation

CONTENTS

PART 1 - GENERAL

1.01 GENERAL DESCRIPTION ... 1
1.02 REFERENCES .. 1
1.03 SYSTEM DESCRIPTION .. 1
1.04 SUBMITTALS .. 2
1.05 WARRANTY ... 5
1.06 MAINTENANCE BOND FOR PUMPING EQUIPMENT .. 5

PART 2 - PRODUCTS

2.01 SUBMERSIBLE PUMPING UNITS ... 5
2.02 EQUIPMENT ACCESS HATCH ... 12
2.03 UTILITY METERING AND MAIN DISCONNECT ... 13
2.04 MOTOR CONTROL CENTER ... 14
2.05 ELECTRICAL PANEL ENCLOSURES AND HEATING .. 17
2.06 CONTROLS AND INSTRUMENTATION .. 18
2.07 BASIC CONSTRUCTION MATERIALS AND COMPONENTS ... 21
2.08 EMERGENCY STANDBY POWER GENERATOR SET ... 40
2.09 AUTOMATIC TRANSFER SWITCH .. 50
2.10 PRECAST REINFORCED CONCRETE WET WELL ... 52
2.11 STAINLESS STEEL PASSIVATION ... 53

PART 3 - EXECUTION

3.01 GENERAL ... 54
3.02 COORDINATION .. 55
3.03 INSPECTION .. 55
3.04 PREPARATION .. 55
3.05 WORKMANSHIP .. 56
3.06 GRADING AND SITE WORK ... 56
3.07 EQUIPMENT INSTALLATION .. 56
3.08 CONDUIT INSTALLATION .. 57
3.09 CONDUCTOR AND CABLE INSTALLATION .. 60
3.10 ELECTRICAL SERVICE INSTALLATION ... 62
3.11 ELECTRICAL SHORT CIRCUIT COORDINATION AND ARC FLASH 62
3.12 CONCRETE CONSTRUCTION .. 62
3.13 PIPE INSTALLATION .. 63
3.14 PIPE TESTING .. 63
3.15 FIELD TESTING AND COMMISSIONING OF EQUIPMENT ... 63
3.16 IN-SERVICE CHECKS .. 71
3.17 INSTRUCTION .. 72
3.18 CLEANING .. 72
[Page Left Intentionally Blank]
PART 1 - GENERAL

1.01 GENERAL DESCRIPTION
Contractor shall provide all labor, equipment, and materials necessary to construct a raw sewage lift (pump) station in accordance with the Small Sewage Lift Station Guidelines, the Standard Drawings and Specifications, District's Approved Materials List, and Standards and Specifications for Developer Projects.

1.02 REFERENCES
Publications listed below form part of this Specification to extent referenced in the text by basic designation only. The latest edition of publication governs unless otherwise noted.

A. ANSI American National Standards Institute
B. AWWA American Water Works Association Standards
C. ASTM American Society for Testing and Materials
D. IEEE Institute of Electrical and Electronics Engineers
E. NEC National Electric Code
F. NEMA National Electrical Manufacturers Association
G. Hydraulic Institute Standard for Centrifugal, Rotary and Reciprocating Pumps
H. SSPWC Standard Specifications for Public Works Construction
I. CBC California Building Code

1.03 SYSTEM DESCRIPTION
A. Design Requirements
Lift station facilities, including materials of construction, pumps, valves and piping, electrical panels and controls, emergency power generator, and automatic transfer switch shall be in accordance with requirements specified herein and shown on the Construction Drawings.
Principal items of equipment and material shall include two submersible centrifugal sewage pumping units, piping, valves, motor control center, main control panel and ultrasonic level control system, automatic transfer switch, emergency standby power generator, and appurtenances.

B. Performance Criteria

Pumps shall be designed to handle raw, unscreened, domestic sanitary sewage. Pumps shall be selected to meet the capacity and hydraulic performance requirements described in the Small Sewage Lift Station Guidelines.

C. Electrical Power Requirements

Electrical power furnished to the pumping unit motors shall be 3 phase, 60 hertz, 480 volts, maintained within industry standards. Voltage tolerance shall be plus or minus 10 percent.

1.04 SUBMITTALS

A. Product Data and Shop Drawings

1. Prior to commencing construction, Contractor shall submit 6 copies of submittal data for all proposed material and equipment to the District for review and approval. Submittals shall be provided in accordance with the requirements of the District's General Conditions, Section F-Labor and Construction.

2. As a minimum, submittals shall include product data and shop drawings for the following: submersible pumping units, emergency standby power generator, diesel particulate filter (if required), motor control center, main control panel, ultrasonic level control system, automatic transfer switch, piping, valves, pipe joint restraints, wet well precast concrete shaft, wet well access hatch, concrete mix design, and electrical materials.

3. Product data shall include catalog cut sheets reflecting characteristics, performance specifications, and selected options for proposed equipment and appurtenances.

4. Product data for submersible pumping units shall include pump performance curves showing the design duty point capacity (GPM), total dynamic head (TDH), net positive suction head required (NPSHr), efficiency, and hydraulic brake horsepower (BHP).
5. Shop drawings shall be provided for all mechanical and electrical equipment items showing layout of equipment and anchor bolt locations, sizes and minimum embedment requirements.

6. Equipment anchorage calculations for the MCC/MCP and emergency standby power generator set. Equipment anchorage calculations shall be prepared in accordance with the California Building Code (latest edition) for Category IV essential facilities. Calculations shall be prepared by a registered professional civil or structural engineer in the State of California.

7. Shop drawings shall also include lift station control wiring diagrams and interconnection diagrams for the motor control center, main control panel, standby generator, submersible pumping units, automatic transfer switch, and electrical service switchgear. Wire numbers, terminal numbers, and legend symbols shall be shown.

8. Lift station control wiring diagrams (ladder diagrams) shall be prepared in accordance with District standard format, including sequential rung numbering located on the left side of the diagram and device, relay, or contact rung number cross references located on the right side of the diagram.

9. If a diesel particulate filter (DPF) is required, Contractor shall obtain and submit a Purchase Order from the manufacturer or installer of proposed generator set with factory-installed DPF or the non factory-installed DPF. The Purchase Order shall identify:
 a) The warranty for the generator set with factory-installed DPF or the non factory-installed DPF.
 b) Procedures for operating and maintaining the proposed generator set with DPF in accordance with the manufacturer’s maintenance and operation handbook.
 c) At least one company with certified technicians to clean and repair DPF when needed.

B. Electrical Short Circuit/Coordination Study

The Contractor shall submit for acceptance an electrical short circuit/coordination study in accordance with District Detailed Provisions, Section 16040 "Electrical Short Circuit/Coordination Study, Arc Flash Hazard Study, and Field Testing of Electrical System".
C. **Arc Flash Hazard Study**

Contractor shall submit for acceptance an arc flash hazard study in accordance with District Detailed Provisions, Section 16040 "Electrical Short Circuit/Coordination Study, Arc Flash Hazard Study, and Field Testing of Electrical System", except that the Arc Flash Hazard/Risk Categories of the electrical distribution equipment shall be limited to Level 2 or less.

D. **Operations and Maintenance Manuals**

1. Operation and Maintenance (O&M) Manuals shall be provided in accordance with the requirements of the District’s General Conditions, Section F-Labor and Construction, and Detailed Provision Section 01430. O&M Manuals shall be submitted to the District for review and approval at least 30 days prior to equipment startup. Comprehensive instructions supplied at time of shipment shall enable personnel to properly operate and maintain all equipment supplied.

2. Documentation shall be specific to the lift station constructed and collated in functional sections. Each section shall combine to form a complete system manual covering all aspects of equipment operation and maintenance. Support data for any equipment shall be provided by those supplying the equipment. O&M Manuals shall include the following as a minimum:

 a) Functional description of major equipment items.

 b) Complete instructions for operating and maintaining equipment and components.

 c) Calibration and adjustment of equipment for initial start-up or as required for routine maintenance.

 d) Support data for commercially available components not produced by the prime equipment manufacturer, but supplied in accordance with the Specifications, shall be supported by literature from the prime manufacturer and incorporated as appendices.

 e) As-built electrical schematic diagrams (control, wiring, and interconnections) of the pumping units, electrical panels, and emergency standby power generator. Diagrams shall conform to the requirements specified in Section 1.04.A herein.
3. As a minimum, Operations and Maintenance Manuals shall be submitted for the following items:

 a) All electrical components.
 b) Pumping units.
 c) Flowmeter.
 d) Emergency standby generator.
 e) Diesel particulate filter (if so equipped).

1.05 WARRANTY
All pumping equipment shall carry an extended warranty for a two-year period from the date of acceptance. All warranties shall be turned into the District prior to project completion.

1.06 MAINTENANCE BOND FOR PUMPING EQUIPMENT
For District administered contracts, the Contractor or his Supplier shall provide a maintenance bond (see EMWD Standard form C-14 or C-14.1 Maintenance Bond) from a bonding company acceptable to the District equal to 100 percent of the pumping equipment value (including motors, pumps, and pump assemblies) for a two (2) year term starting when the District has accepted the contracted work. Equipment and/or components failing within this period due to deficiency in design, workmanship, or materials shall be removed, replaced, and reinstalled at no cost to the District, and said replacement shall be guaranteed for two years continuous service from the date of replacement. The maintenance bond shall be submitted to the District prior to the performance test of the pump(s).

For contracts not administered by the District (e.g. contracts administered by Developer, or Developer's Engineer), the Developer shall provide the Maintenance Bond for Developer (which is the same as the above referenced maintenance bond except for the wording of the document) to the District. EMWD standard form C14D, Maintenance Bond for Developer, is attached at the end of this Section.

PART 2 - PRODUCTS

2.01 SUBMERSIBLE PUMPING UNITS

 A. General

 Pumps shall be of the vertical, non-clog, single suction, centrifugal type, rated for continuous duty in a wet-pit environment, and shall be capable of pumping raw, unscreened sewage with fibrous material, and be capable of passing a minimum 3-inch solid (unless otherwise specified) at the specified flow ranges with the specified sump geometry and operating water levels without clogging, surging, cavitation, vibration, subsurface vortexing, or excessive surface vortexing.
All submersible non-clog sewage pumps shall be the product of a single manufacturer. Pumps shall be as manufactured by Wilo-EMU, Fairbanks Nijhuis, Wemco, ESSCO, Flowserve, Xylem-Flygt, or ABS (no substitutes). Proposed pumping units shall comply with these Specifications and performance requirements provided on Construction Drawings.

The pumps shall not overload the motors at any point on the pump performance characteristic curve within the limits of stable pump operation as recommended by the manufacturer. The service factors for the motors shall not be applied when sizing the motors.

To ensure vibration-free operation, all rotative components of each pumping unit shall be statically and dynamically balanced. Excessive vibration shall be sufficient cause for rejection of the equipment.

If the pumping unit does not perform within the requirements specified herein, the pumping unit shall be removed and repaired or replaced at no cost to the District.

B. Materials (Unless Otherwise Specified)

1. Strength

Castings, fabrications, machined parts, and drives shall be rated for continuous duty over the entire operating range. Service factors, where applicable, shall be assumed to be 1.5.

2. Volute Casing

Volute casing shall be of close grained gray cast iron ASTM A48 Class 30 (minimum) and shall be of a single piece, non-concentric design with smooth fluid passages large enough to pass any size solids which can pass through the impeller. Casings shall be accurately machined to fit the mechanical seal and suction cover assemblies. Each volute casing shall be subjected to hydrostatic pressure of not less than 1-1/2 times the maximum shutoff head for two hours without evidence of leakage or seepage. The volute discharge nozzle shall be of the centerline design with an ANSI 125 pound flange and be of the minimum size specified herein.

3. Impellers

Each impeller shall be a non-clog type cast in one piece of gray cast iron, ASTM A48, Class 30 (minimum), and shall be statically and dynamically balanced, with smooth water passage to prevent clogging by stringy or fibrous materials and other matter found in normal sewage applications. Each impeller shall be keyed to
the shaft, and the fastening of the impeller to the shaft shall be made by a special locking device. Impeller shall be sealed from the liquid by means of an "O-ring" and covered and secured to the end face of the shaft by a single bolt with locking device to ensure impeller bolt will not back out if pump is operated backwards.

Unless otherwise specified, impellers shall be enclosed single port, recessed vortex type, or grinder type. Grinder type impellers shall be multi-vane, semi-open with replaceable cutting heads.

District will predetermine the specific impeller type(s) to be used for each project.

4. Volute Wear Ring (not applicable to recessed vortex pumps)

The pump suction shall be fitted with a replaceable stainless steel wear ring with a minimum hardness of 350 BNH.

5. Impeller Wear Ring (not applicable to recessed vortex pumps)

Each impeller shall be fitted with a replaceable stainless steel wear ring with a minimum hardness of 300 BNH to provide efficient sealing between the volute and impeller.

6. Discharge Elbows

Each pump shall be provided with a discharge elbow to be permanently installed with discharge piping in the wet well. The discharge elbow shall be made of close grained cast iron ASTM A48, Class 30 (minimum). The pump shall automatically connect to the discharge connection elbow when lowered into place. Pump shall be easily removed for inspection or service with no need for personnel to enter the wet well. Sealing of the pump to the discharge elbow shall be accomplished by a simple linear downward motion of the pump. Connection shall be machined metal-to-metal, quick disconnect at pump volute, with secondary profile type Elastomer seal or O-ring element for leak proof seal when the pump is in operation.

7. Pump Shaft

Pump shaft shall be high strength 416 stainless steel or carbon steel with 416 stainless steel shaft sleeve and of such diameter that it will not deflect more than 0.002-inch with the largest impeller installed while operating at the maximum design speed, as determined by calculations from the manufacturer.
8. Pump Seals

Each pump shall be provided with two independent mechanical shaft seals. The upper seal shall operate in an oil chamber located just below the stator housing. Upper seal shall contain one stationary tungsten carbide or silicon carbide ring and one positively driven rotating carbon ring functioning as an independent secondary barrier between the pumped liquid and the stator housing. The lower shaft seal shall function as the primary barrier between the pumped liquid and the stator housing. Lower seal shall consist of a stationary ring and a positively driven rotating ring both of which shall be silicon carbide. All metal parts, set screws, and springs of both upper and lower seals shall be 316 stainless steel.

Each interface shall be held in contact by its own spring system supplemented by external liquid pressures. The seals shall require neither maintenance nor adjustment, but shall be easily inspected and replaceable.

The shaft sealing system shall be capable of operating submerged to depths of, or pressures equivalent to, a minimum of 45 feet. No seal damage shall result from operating the pumping unit in its liquid environment. The seal system shall not rely upon the pumped media for lubrication.

9. Guide and Removal System

System shall be designed for pump removal and installation to permit routine maintenance and repair of pumps. Pump supplier/manufacturer shall furnish a reliable, operable system and shall provide technical assistance for installation. Contractor shall demonstrate the use of the system for each pump by removing and reinstalling each pump with the wet well dry. After start-up of pumps, Contractor shall again remove and reinstall each pump then operate pumps again to demonstrate proper installation. The removal system shall be suitable for lifting the pumps with a crane utilizing a stainless steel cable that will be attached to the pump motor lifting bail assembly. The complete guide and removal system shall be furnished with the pumps.

The guide and removal system shall consist of a foot mounted discharge elbow, no less than two 316 stainless steel guide rails, upper rail support bracket, and intermediate rail guide brackets for each pump. Each pumping unit shall be provided with an integral sliding guide bracket. All guide and removal system components, except pump discharge elbow and pump sliding guide bracket, shall be constructed of 316 stainless steel, or better. The pump guide and removal system shall be non-sparking.
10. Electric Submersible Motors

Each pump shall be driven by a vertical, submersible, squirrel cage, induction, shell type motor rated 480 volts, 3 phase, 60 hertz, housed in an air-filled, watertight chamber specifically designed for pumping application as specified herein. Maximum motor speed shall be 1,800 rpm. Electric submersible motor shall be explosion-proof and shall be approved by Factory Mutual (FM) or Underwriters Laboratories (UL) as an Explosion-Proof Unit. The complete unit shall conform to the NEC, Articles 500, 501, and 502 requirements as explosion-proof and suitable for use in Class I, Division 1, Groups C and D hazardous locations. Manufacturers shall coordinate pump motor furnished with electrical switchgear and control equipment.

a) **Stator.** The stator winding and stator leads shall be insulated with moisture resistant Class F insulation which will resist a temperature of 155°C, 40°C ambient plus 115°C rise, and designed for continuous duty, capable of sustaining a minimum of ten (10) starts per hour. The stator shall be dipped and baked three times in Class F varnish and shall be heat-shrink fitted into the stator housing. The use of bolts, pins, or other fastening devices requiring penetration of the stator housing shall be rejected. Motors shall be capable of continuous duty operation over the wet well range shown on the drawings including being partially submerged and capable of operating for 15 minutes in air at nameplate horsepower, unless specified for continuous operation in air.

b) **Sensors.** Thermal sensors shall be used to monitor stator temperatures. The stator shall be equipped with bi-metallic thermal switches embedded in the stator winding. Sensors shall be rated 120 VAC with normally closed contacts which open upon high temperature. Dual (2) moisture sensing probes or one positive displacement float activated reed switch and one hydroscopic sensor shall be provided in the oil chamber located between the outer and inner seal and are used to detect the presence of moisture should the outer seal fail. The moisture protection system shall be designed to detect water in the motor chamber and provide a warning signal prior to water levels reaching the bearing or wound stator assemblies. Sensor alarms will be incorporated into the station controls. Control modules, such as Warrick relays, shall be provided by the pump manufacturer for incorporation into the MCC controls.

c) **Service Factor.** Unless specified otherwise by specific performance requirements the motor shall be sized to be non-overloading when the pump is operated at any point on the pump performance characteristic curve and shall have a minimum service factor of 1.15. Motor service factor shall not be used in satisfying pumping requirement.
d) **Lifting Assembly.** Lifting assembly (lifting eye or lifting bail) shall be provided on the motor housing and shall be of adequate strength to lift the entire pumping unit. Lifting assembly shall be 316 stainless steel, or better. Lifting assembly shall be provided with a 316 stainless steel clevis and lifting cable. The clevis shall be furnished with a locking mechanism for the clevis bolt, such as a cotter pin. Lifting cable shall be manufactured in the USA and shall be tagged with the lifting capacity per ANSI and Cal/OSHA requirements.

e) **Oil Chamber.** Each pump shall be provided with an oil chamber for the shaft sealing system. The oil chamber shall be designed to assure that air remains in the oil chamber to absorb the expansion of the oil due to temperature variations. The drain and inspection plugs, with positive anti-leak seals, shall be easily accessible from the outside.

f) **Bearings.** Each pump shaft shall rotate on minimum of two (2) permanently lubricated bearings. The upper and lower bearings shall be a single row deep groove ball bearing with the upper bearing providing for radial thrust. Pump bearings shall be of the anti-friction type designed to give 40,000 hours minimum life by L-10 calculations at maximum speed and operating load in continuous operation.

g) **Cable.** Each pump shall be furnished with one or more pump power and control cables as necessary for pump operation and protection. Each cable shall be sheathed in a synthetic jacket suitable for submersible pump application and be designed to prevent moisture from wicking through the cable assembly even if cable jacket has been punctured. Cable ends shall be protected at all times from moisture. Exposure to moisture shall result in rejection of the cable. The total cable length shall be of sufficient length for direct connection to pump control and electrical power system at junction boxes shown on the Construction Drawings, including an extra 4 feet to be looped around cable supports.

h) **Cable Entry.** The cable entry assembly shall be provided to protect the motor from water entering the motor housing either through the cables or around the cables, when the unit is submerged and operating. Adequate strain relief provisions shall be provided to eliminate any mechanical loading of the cable entry seal. Each individual conductor wire shall be cast in resin in such a manner that any water leakage in motor through capillary action, because of external cable damage or other causes, shall be avoided.
11. Protective Coating for Exposed Ferrous Metal Surfaces

Protective coating shall be manufacturer's standard epoxy coating for severe duty, unless specified otherwise on the Construction Drawings.

12. Nameplates

Each pump shall have a Type 316 stainless steel plate permanently attached by stainless steel screws or rivets to the pump frame into which the following information shall be impressed, engraved or embossed, manufacturer's name, pump size, serial number, impeller diameter, capacity, head rating, speed, and bearing numbers. Nameplates shall also include information unique to each item of equipment and device to identify its function as described herein. Function nameplates shall be approximately one inch by 3 inches if made separately. Letters of function titles shall be not smaller than 1/4-inch high.

13. External Hardware

All external nuts, bolts, and washers etc. shall be 316 stainless steel.

14. Pump Spare Parts

Contractor shall furnish spare parts for each pumping unit. Spare parts shall be as specified herein or as recommended by the manufacturer, shall be undamaged and packaged in original containers, and supplied to the District at time of final acceptance of the work.

Contractor shall furnish the following spare parts:

a) Two spare sets of cable entry grommets and O-rings.

b) Two spare sets of mechanical seals.

c) Two spare impellers.

C. Factory Testing

1. Tests shall be performed on the actual assembled unit over the entire operating range on the certified performance curve. Prototype model tests will not be acceptable.

2. All pumps shall be factory-tested in accordance with the above specifications. Certified test results shall be submitted to the District for approval prior to shipment.
3. Pump curves shall reflect data secured during actual test runs and shall be signed by a responsible representative of the pump manufacturer. Test reports and procedures shall conform to applicable requirements of the Hydraulic Institute Standards, except for testing tolerances for the design condition with one pump operating as shown on the pumping unit performance on the Construction Drawings. Testing tolerance for the design condition shall be +5%-0% for the total dynamic head at the discharge capacity. All other pumping unit performance conditions shall be within the limits shown on the Construction Drawings.

D. Installation

The Contractor shall install all pumping equipment in strict accordance with the manufacturer's instructions. Care shall be used in handling to avoid bumping, twisting, dropping, or otherwise damaging the equipment.

All pump manufacturers shall furnish the services of factory-trained personnel as required to examine the installation, supervise start-up of equipment installed, and repair the equipment at no additional expense to the District.

2.02 EQUIPMENT ACCESS HATCH

Furnish and install a single or double leaf equipment access hatch with safety grates and integral cable troughs as shown on the Construction Drawings. The access hatch shall be integrally cast into the concrete wet well roof. The top of the access hatch shall be flush with the top of the concrete roof. The minimum clear hatch opening dimensions shall be as shown on the Construction Drawings. The access hatch shall be pre-assembled from the manufacturer. The manufacturer shall warranty that the assembled access hatch shall be free of defects in material and workmanship for a period of (5) years from date of project acceptance. The access hatch shall be as manufactured by U.S.F. Fabrication, Flygt, Bilco or equal.

The access hatch covers, frame, cable trough, components, and hardware shall be constructed of 316 stainless steel. Hatch covers shall be 3/16" (minimum) thickness with a diamond pattern. Safety grates shall be provided beneath the hatch covers for fall through protection when the covers are open. The hatch covers and safety grates shall be reinforced to support a minimum live load of 300 psf with a maximum deflection of 1/150th of the span. Each safety grate shall be provided with a permanent hinging system that will lock the grates in the 90 degree position once opened. Safety grate hinges shall be specifically designed for horizontal installation and shall be through bolted to the safety grate with tamperproof stainless steel lock bolts and shall be through bolted to the equipment access hatch frame with stainless steel bolts and locknuts. Safety grate openings shall be 5" by 5" to allow for visual inspection of the wet well while the grating is in place. The hatch frame shall be angle type and shall be provided with full anchor flange around the perimeter.
Each cover leaf shall be provided with a lift handle that remains flush with the cover when not in use. A removable exterior turn/lift handle with slam lock shall be provided to open the top leaf. The latch release shall be protected by a flush, gasketed, removable screw plug. The top leaf shall also be provided with a recessed padlock clip and cover box. Each cover leaf shall be equipped with a hold open arm, which automatically locks the covers in the open position.

2.03 UTILITY METERING AND MAIN DISCONNECT

A. Main Electrical Service

As shown on the Construction Drawings, main electrical service shall consist of a commercial pedestal with pull section, service (metering) section, and main disconnect. The service pedestal shall be rated for a minimum of 200A on 480 volt, 3-phase power. The service pedestal shall be UL listed with a short circuit current rating of 42 KAIC (minimum). Equipment shall include a separate, barriered-off, utility metering compartment complete with hinged sealable door and padlock hasp as approved by the utility company. Provide Service Entrance Label and provide necessary applicable service entrance features per NEC, local code requirements, and utility company requirements. Main electrical service shall be as manufactured by Milbank Manufacturing Co., or Cooper B-Line, no substitutes.

The main electrical service and disconnect enclosure shall be provided in accordance with these provisions, and as shown on the Construction Drawings. Unless specified otherwise, the main electrical service enclosure shall be NEMA Type 3R.

B. Main Disconnect

Main disconnect shall be molded case circuit breaker with provisions to lockout the main disconnect switch as shown on the Construction Drawings.

Molded case circuit breakers shall provide circuit overcurrent protection with inverse time and instantaneous tripping characteristics. Circuit breakers shall be operated by a toggle-type handle and shall have a quick-make, quick-break over-center switching mechanism that is mechanically trip-free. Automatic tripping of the breaker shall be clearly indicated by the handle position. Contacts shall be non-welding silver alloy, and arc extinction shall be accomplished by means of DE-ION arc chutes. A push-to-trip button on the front of the circuit breaker shall provide a local manual means to exercise the trip mechanism.

Circuit breakers shall have a minimum symmetrical interrupting capacity matching the MCC where installed or as shown on the Construction Drawings. Circuit breakers shall be provided with adjustable continuous current and thermal-magnetic trip units and inverse time-current characteristics unless otherwise shown on the Construction Drawings.
C. **Arc Flash Limit**

Main electrical service shall be designed, manufactured, and supplied such that the Arc Flash Hazard/Risk Categories shall be Level 2 or less within the Arc Flash Protection Boundary.

Circuit breakers used as a main to disconnect utility power shall be provided with microprocessor-based RMS sensing trip units.

The electrical equipment manufacturer shall coordinate with the engineer(s) performing the Short Circuit/Coordination and Arc Flash Hazard Studies per Section 16040 to comply with the Hazard/Risk Category Level 2 or less.

2.04 MOTOR CONTROL CENTER

A. Construction

1. Motor Control Centers (MCCs) shall be provided as shown on the Construction Drawings and specified herein. MCCs shall comply with the requirements of NEMA ICS 2, the NEC, and UL 845. Wiring shall be NEMA Class II, Type B. MCCs shall be as manufactured by General Electric, Eaton/Cutler Hammer, Allen-Bradley, or Schneider Electric/Square D, no substitutes.

2. Structures shall be totally enclosed dead front, free-standing assemblies. They shall be 90± inches high and 21± inches deep. Each structure shall be minimum 20± inches wide and wider where shown on the Construction Drawings, or where required to house components shown on the Construction Drawings. Structures shall contain a horizontal wireway at the top, isolated from the horizontal bus and shall be readily accessible through a hinged cover. Adequate space for conduit and wiring to enter the top or bottom shall be provided without structural interference.

The MCC enclosure shall be provided in accordance with these provisions, Section 2.05 herein, and as shown on the Construction Drawings.

3. A vertical wireway with minimum of 35 square inches of cross sectional area shall be adjacent to each vertical unit and shall be covered by a hinged door. Wireways shall contain steel rod cable supports.

4. All full voltage motor starter units through NEMA Size 5 shall be of the plug-in type. Plug-in provisions shall include a positive guide rail system and stab shrouds to absolutely ensure alignment of stabs with the vertical bus. Plug-in units shall have a tin-plated stab assembly for connection to the vertical bus. No
wiring to these stabs shall extend into the bus compartment. Interior of all units shall be painted white for increased visibility. Units shall be equipped with side-mounted, positive latch pull-apart type control terminal blocks rated 600 volts. Knockouts shall be provided for the addition of future terminal blocks. All internal control wire to be 14 gauge minimum.

5. All plug-in units shall be secured by a spring-loaded quarter turn indicating type fastening device located at the top front of the unit. Each unit compartment shall be provided with an individual front door.

6. An operating mechanism shall be mounted on the primary disconnect of each starter unit. It shall be mechanically interlocked with the unit door to prevent access unless the disconnect is in the OFF position. A defeater shall be provided to bypass this interlock. With the door open, an interlock shall be provided to prevent inadvertent closing of the disconnect. A second interlock shall be provided to prevent removal or re-insertion of the unit while in the ON position. Padlocking facilities shall be provided to positively lock the disconnect in the OFF position with from one to three padlocks with the door open or closed. In addition, means shall be provided to padlock the unit in a partially withdrawn position with the stabs free of the vertical bus.

B. **MCC Bus**

1. Each structure shall contain a main horizontal copper tin plated or copper silver plated bus, with minimum ampacity rating of 400 amperes or as shown on the Construction Drawings. The horizontal bus shall be rated at 65 degrees C temperature rise over a 40 degree C ambient temperature in compliance with UL standards. Vertical busses feeding unit compartments shall be copper and shall be securely bolted to the horizontal main bus. All joints shall be front accessible for ease of maintenance. The vertical bus shall have a minimum rating of 300 amperes for front mounted units.

2. Isolation of the vertical bus compartment from the unit compartment shall be by means of a full height insulating barrier. This barrier shall be a single sheet of glass reinforced polyester with cutouts to allow the unit stabs to engage the vertical bus. Provide snap-in covers for all unused openings.

3. Busses shall be braced for minimum 42,000 amperes RMS symmetrical, unless shown otherwise on the Construction Drawings.

C. **MCC Motor Controllers (Combination Starters)**

Motor controllers shall consist of combination starter units with motor circuit protectors and motor starters with thermal bimetallic overload relays. Motor starter control power
(120V) shall be provided from the lighting panel included in the MCC assembly as shown on the Construction Drawings.

Combination starter units shall be as specified herein and shall be full voltage non-reversing, rated minimum 42,000 amperes RMS, symmetrical at 480V, unless shown otherwise on the Construction Drawings. Combination starter units shall conform to the following:

1. Motor Circuit Protectors shall be as manufactured by General Electric, Eaton/Cutler Hammer, Allen-Bradley, or Schneider Electric/Square D, (no substitutes).

 The motor circuit protection shall provide adjustable magnetic protection and be provided with pin insert to stop magnetic adjustment at 1300 percent motor nameplate full load current to comply with NEC requirements. All combination starter units shall have a "tripped" position on the unit disconnect and a push-to-test button on the motor circuit protector. Motor circuit protectors shall include transient override feature for motor inrush current.

2. Motor starters shall be electrically operated, electrically held, three-pole assemblies with arc extinguishing characteristics and shall have silver-to-silver renewable contacts. They shall accommodate a total of eight N.O. or eight N.C. auxiliary contacts. Overload protection shall consist of thermal bimetallic ambient compensated type overloads. Sizes shall be determined by the Contractor based on characteristics of actual motor furnished.

3. Each starter (unless otherwise shown) shall be equipped with indicating lights, selector switches, elapsed time meter, and auxiliary contacts, as shown on the Construction Drawings. Number of auxiliary contacts shall be as required for specific motor control. In addition, 2NO and 1NC spare contacts shall be provided.

4. All status and alarm lights shall be push-to-test type, and shall be heavy-duty, oil-tight (NEMA 13).

D. Arc Flash Limit

Motor control centers shall be designed, manufactured, and supplied such that the Arc Flash Hazard/Risk Categories shall be Level 2 or less within the Arc Flash Protection Boundary.

Distribution circuit breakers used to disconnect power from motor control centers and motor control center mains shall be provided with microprocessor-based RMS sensing trip units.
The electrical equipment manufacturer shall coordinate with the engineer(s) performing the Short Circuit/Coordination and Arc Flash Hazard Studies per Section 16040 to comply with the Hazard/Risk Category Level 2 or less.

2.05 ELECTRICAL PANEL ENCLOSURES AND HEATING

A. Enclosures

MCC enclosures shall be as specified on the Construction Drawings and shall be suitable for the proposed location. Unless noted otherwise on the Construction Drawings, the specified electrical equipment and switchgear shall be housed in NEMA 1 gasketed enclosures with NEMA 3R wrappers. Enclosures shall have NEMA 3R wrap roofs sloping downward towards the rear. Outer sections shall be the same widths as indoor structures, except each end of the outdoor assembly shall have an end trim. The enclosures shall be provided with bolt on rear covers for each section.

Enclosures shall be provided with ANSI 61 gray baked enamel exterior, and white baked enamel interior. As a minimum, each enclosure section shall be furnished with a convenience receptacle, overhead fluorescent light activated manually by inside mounted switch, and padlockable door handle.

Nameplates shall be provided for all electrical enclosures, stations, and equipment furnished by the Contractor. Nameplates shall be engraved laminated plastic, with 1/4" high white lettering on black background. Nameplates shall indicate equipment and its function. Nameplates shall be securely fastened with stainless steel drive screws or escutcheon pins.

B. Heating

MCC enclosures shall be provided with thermostatically controlled space heaters to prevent condensation. Heating shall be as designed by the manufacturer, unless shown specifically on the Construction Drawings.

Control power transformers with primary and secondary fuse protection shall be provided as required for proper operation of the heating equipment, unless shown otherwise on the Construction Drawings. Supply voltage shall be 120 volts, 60 Hz.
2.06 CONTROLS AND INSTRUMENTATION

A. Main Control Panel

1. General

The Main Control Panel (MCP) shall be housed in the MCC line up as shown on the Construction Drawings. The MCP shall consist of all relays, timers, switches, pushbuttons, lights, and components as shown on the Drawings and specified herein. The MCP shall control the pumping units in the automatic mode and provide alarm output to the RTU.

Control power to the MCP shall be 120 volt, 60 Hz, single phase from the lighting panel and shall be provided with a fuse for short circuit protection. The MCP shall also be provided with a 120 volt, auxiliary duplex receptacle, protected with a 20A thermal magnetic breaker within the MCP.

Selection of the "lead" pumping unit shall be controlled by District RTU.

Alarm lights for wet well level alarm conditions shall be located at the MCP. Alarm lights shall be push-to-test type, and shall be heavy-duty, oil-tight (NEMA 13).

2. Terminal Blocks

Terminal blocks shall be molded plastic with barriers and box lug terminals, and shall be rated 15 amperes at 600-Volts. White marking strips, fastened securely to the molded sections, shall be provided, and wire numbers or circuit identifications shall be marked thereon with permanent labels.

3. Signal and Control Circuit Wiring

a) Wire Type and Sizes. Where conductors are within the control panel, they shall be flexible stranded copper machine tool wire; these shall be UL listed Type MTW and shall be rated 600-Volts minimum 14 AWG. Where conductors are run to MCC sections or to field locations, they shall be stranded copper minimum 12 AWG of the UL listed Type THWN.

b) Wire Termination. Conductors from field components or from MCC sections shall terminate in the MCP at terminal blocks. Control circuit wiring shall connect from terminal blocks to relays, timers, lights, and switches.

c) Wire Marking. Each signal, control, alarm, and indicating circuit conductor connected to a given electrical terminal point shall be designated by a single unique number which shall be shown on all shop drawings. Status, alarm,
and control signal (IO) conductors to and from the RTU terminal strips shall be identified at both ends using the District's labeling designation shown on Drawing E-4, "RTU Status/Alarm Signal Wiring Diagram" (i.e. 4-6, 5-2, etc.). These numbers shall be marked on all conductors at every terminal using white numbered wire markers which shall be permanently marked heat-shrink plastic. Font shall be sized to be legible after shrinking.

B. **Ultrasonic Level Control System**

Each ultrasonic level control system shall include an ultrasonic level transducer and an ultrasonic controller. Each controller shall be flush mounted on the MCP door.

The transducer shall be capable of submergence without degradation. Transducer shall function over an ambient temperature range of -40°F to 200°F, and shall be rated by FM and CSA for Class I and II hazardous environments.

The transducer shall be provided with integral temperature sensor for speed-of-sound compensation and shall be Model Echomax XPS-15 as manufactured by Siemens, no substitutes.

Unit shall operate on 120V, 60 Hz power, unless otherwise specified, and provide 4-20 mA DC output, current isolated, into a maximum of 600 ohms (return to ground).

Controller shall function over an ambient temperature range of 15°F to 122°F. The controller shall be a single point, three relay type controller with auto-false echo suppression for fixed obstruction avoidance, Hydro Ranger 200 Series as manufactured by Siemens, no substitutes.

Interconnecting cable between transducer and controller shall be supplied with unit, and shall be suitable for a maximum system length of 300'. Contractor shall verify length of cable required for each specific installation. Cable shall be installed in a single run with no splices. Cable shall be installed in continuously grounded PVC-coated Rigid Galvanized Steel conduit. Conduit shall be installed a minimum of 8' from 480V conduits.

C. **Wet Well Level Float Switches**

Float switches shall be designed for operation in raw sewage and shall be hermetically sealed in high impact corrosion resistant polypropylene or polyurethane. Cables shall be minimum 16 gauge multi-strand polyvinylchloride (PVC) jacketed cable (oil and water resistant) suitable for underwater use and heavy flexing service. Float switches shall be rated minimum 4 amps at 120 VAC. Float switches shall be provided with stainless steel clamps and appurtenances suitable for mounting switches to a vertical 3/4-inch pipe.
Float switches shall be as manufactured by Flygt Corporation, Warrick Controls, Anchor Scientific Inc., Consolidated Electric Co., or equal.

Each float switch shall be provided with an intrinsically safe relay complete with reduced voltage transformer and contacts. Relays shall be specified for use in NEC, Class I, Division 1 (hazardous) locations, and shall be Factory Mutual or UL listed for explosion proof service. Intrinsically safe relays shall be as manufactured by Warrick (no substitutes).

D. Magnetic Flow Meter

Contractor shall provide a magnetic flow meter as specified hereinafter.

1. Meter Design and Construction

The magnetic flow meter shall use characterized electromagnetic introduction to produce a voltage linearly proportional to the average flow rate. Each magnetic flow meter shall be microprocessor based, and utilize D.C. bipolar pulsed coil excitation, automatically re-zeroing after every cycle. The sensor shall be a Type 304 stainless steel tube, carbon steel flanged, and polyurethane lined, with a nominal diameter as shown on the Construction Drawings.

External surfaces shall be factory finished with a high build epoxy paint or better for corrosion prevention. The flow meter electrodes and built in grounding electrodes shall be Type 316 stainless steel. If built in grounding is not provided, Type 316 stainless steel grounding rings shall be mounted in each end of the meter.

The preamplifier input impedance shall not be less than 10^{11} ohms and shall be capable of operating with a power supply of 24 volts ±10 percent. The sensor shall be NEMA 4X and certified for use in Class 1, Division 1, Groups B, C, and D.

Accuracy of the flow meter system shall be ±1 percent of rate above 1 fps and ±0.1 percent of full scale below 1 fps. Accuracy shall be verified by calibration in a flow laboratory traceable to the National Institute of Standards and Technology. The meter shall incorporate an empty pipe detection feature which shall cause the meter to register zero flow when the sensor is not full.

2. Signal Converter/Transmitter

Signal converter shall be mounted remotely from the meter in the Main Control Panel (MCP). Signal converter shall be flush mounted on the MCP door as shown on the Construction Drawings. Contractor shall provide door cut-out, support brackets, and bezel as required for flush door mounting.
Signal converter shall provide a 16-character alphanumeric display indicating flow units as specified herein and total flow in Gallons X 100.

Features allowing menu selection, calibration, and program changes to be made from outside the housing shall be incorporated.

It shall produce a 4-20 mA DC output signal into a minimum load of 800 ohms, linear to flow, and a scaled pulsed output.

3. **Manufacturer**

Magnetic flow meters shall be the product of ABB, Endress & Hauser, or Siemens (no substitutions). Manufacturers shall modify or supplement standard equipment to provide features as specified herein. Manufacturers shall guarantee equipment against defects in material and workmanship for a period of two years from date of project acceptance.

E. Operator Interface Terminal (OIT)

OIT shall have a 5.7" TFT 65,536 color screen with resistive type touch screen and 270 cd/m² brightness. OIT shall require 24 VDC power and comply with EN50081-2, EN50082-2, and FCC Class A standards. OIT shall be connected to District's Kingfisher RTU via 8-conductor flat communications cable and software shall be compatible with District's RTU. OIT shall be C-More Touch Panel Part No. EA7-T6CL-R as manufactured by Koyo Electronics (no substitutes).

2.07 **BASIC CONSTRUCTION MATERIALS AND COMPONENTS**

A. **General**

Specification requirements for basic construction materials and components utilized in sewage lift station construction are provided hereinafter. Not all construction materials and components required for lift station construction are included herein. Contractor shall refer to the District's Approved Materials List, Engineering Standard Detailed Provision Sections, and the SSPWC for items not included in this Specification.

B. **Valves**

1. **General**

All interior non-working ferrous surfaces other than stainless steel shall be given an epoxy coating.
All valve interiors shall be fusion bonded epoxy coated (8 to 12 mils) in accordance with AWWA C550 (latest). District shall approve epoxy coating materials and methods before application. Completed coating shall be free from all defects and shall be inspected by use of low voltage holiday detecting and non-destructive thickness gauges.

Where the manufacturer demonstrates in writing that it would be impossible to use the powder epoxy method without causing damage to the valve components, the use of a liquid epoxy will be permitted upon approval by the District.

2. Swing Check Valves

Each pump shall be equipped with a full flow type swing check valve, minimum 4" size, with flanged body and be fitted with external lever and spring. Swing check valves shall be provided in accordance with AWWA C508. Valves shall be fully opening, have a flanged cover piece to provide access to the disc, and be designed for minimum water-working pressure of 150 psi. The valve body and cover shall be ductile iron or cast iron conforming to ASTM A-126, Class B, with flanges conforming to ANSI B16.1, Class 125. The valve disc shall be cast iron, ductile iron, or bronze conforming to ASTM B 62. Valve seat and rings shall be bronze conforming to ASTM B 62. The hinge pin shall be of bronze or stainless steel. Swing check valves shall be the product of a single manufacturer and shall be APCO, Clow, Mueller, M&H, Kennedy, or Stockham, no substitutes.

3. Plug Valves

Plug valves shall be of the non-lubricated eccentric type with cylindrical/rectangular port design. The port area shall be 100% of the standard pipe area. The valve body and plug shall be constructed of cast iron meeting the requirements of ASTM A-126, Class B. Valve bearing shall be constructed of corrosion resistant stainless steel. The entire plug shall be completely encapsulated with Buna N rubber. The valves shall be flanged with dimensions, facing, and drilling in full conformance with ANSI B 16.1, Class 125. With the plug in the full open position, valve shall have no cavities where debris can collect, have minimal head loss and be capable of passing a clean out pig with the same nominal diameter as the adjacent pipe. Valves shall be equipped with worm gear operators conforming to AWWA C504, Section 3.8. All eccentric plug valves shall have a pressure rating of not less than 150 psi, for bubble tight shut off. Valves shall be the product of a single manufacturer and shall be DeZurik Corporation PEF, or equal.

Valves shall be installed in strict accordance with the manufacturer's written instructions and as specified in the District's Detailed Provisions Section 15105, Part 3.
4. Combination Sewage Air and Vacuum Valves

a) General

Combination sewage air and vacuum valves shall have an elongated body and be of the type that automatically exhausts large quantities of air during filling of the system, allows air to re-enter during draining of the system, and allows accumulating air to escape while in operation and under pressure.

b) Cast Iron Combination Sewage Air and Vacuum Valves

Each valve unit shall be supplied with isolation valve (solid wedge gate), blow-off valve, 1/2 inch back flushing shutoff valve, and 5 foot rubber supply hose with disconnect couplings. The unit shall be designed for an operating pressure of not less than 125 psi.

The body and cover shall be cast iron, internal float and float guide shall be stainless steel with Buna N seat, valves shall be gate type of bronze construction. Seat hardness shall be selected by the manufacturer for actual operating pressure of the system. Cast iron combination sewage air and vacuum valves shall be manufactured by Val-Matic Valve, Multiplex Manufacturing Corporation (Crispin), APCO by Valve and Primer Corporation, no substitutes.

c) Stainless Steel Combination Sewage Air and Vacuum Valves

Each valve unit shall be supplied with isolation valve (solid wedge gate). Backflush shutoff valve and supply hose are not required. The unit shall be designed for an operating pressure of not less than 125 psi. The body and cover shall be Type 316L stainless steel. Anti-surge orifice float, upper float, and lower float assembly shall be high density polyethylene. O-ring seats shall be EPDM rubber and seat hardness shall be selected by the manufacturer for actual operating pressure of the system. Stainless steel combination sewage air and vacuum valves shall be Vent-O-Mat Series RGX, no substitutes.

C. Piping and Fittings

1. Ductile iron pipe shall conform with AWWA C 150 and C 151. Unless specified otherwise on the Construction Drawings, ductile iron pipe shall be minimum Class 53 thickness.
2. Flanged ductile iron pipe shall conform to AWWA C 115 and grooved ductile iron pipe shall conform to AWWA C 606. Flanges shall be ductile iron Class 125, ANSI B16.1.

3. Ductile iron fittings shall be Class 250 and shall conform to AWWA C 110. Ductile iron mechanical joint fittings shall be Class 350 and shall conform to AWWA C104.

4. All ductile iron pipe and fittings shall have an interior cement mortar lining of standard thickness in accordance with AWWA C 104.

5. Below grade ductile iron pipe and fitting shall be provided with an exterior asphaltic coating in accordance with AWWA C 151 and polyethylene encasement in accordance with AWWA C 105.

7. Stainless steel fittings 2 inches and smaller shall be ASTM A351, Grade 316, ANSI B16.3, Class 150, threaded.

8. Stainless steel fittings 2 1/2 inches and larger shall be ASTM A403 and A774, Grade 316, ANSI B16.9, B36.19. Schedule 40, standard weight, smooth-flow (mitered fittings are not acceptable).

9. Stainless steel flanges shall be ANSI A182, Grade 316, slip-on or weld neck ANSI B16.5, Class 150.

10. All stainless steel piping, fittings, and flanges shall be shop welded (field welding not permitted). All welds shall be pickled and passivated in accordance with Part 2.11 "Stainless Steel Passivation".

D. **Concrete**

Unless specified otherwise on the Construction Drawings, all concrete shall be Class AA per District Detailed Provisions, Section 03300. Cement shall be Type V per ASTM C 150. Prior to commencing construction, Contractor shall submit the proposed concrete mix design to the District for review and acceptance.

All concrete construction shall be in accordance with District Detailed Provisions, Sections 03150, 03200, and 03300.
E. **Miscellaneous Metals**

1. **Steel**

 a) **Stainless Steel.** Unless otherwise designated or approved, Contractor shall use Type 316 stainless steel alloy conforming to ASTM A-167 and ASTM A-276, latest editions, for plates and bars.

 b) **Steel Pipe.** Material shall conform to ASTM A-53, Grade B seamless galvanized as required, Schedule 40.

2. **Cast Iron**

 Material shall conform to ASTM A-48, Class 30, except as specifically designated otherwise.

3. **Ductile Iron**

 Material shall conform to ASTM A-536 using grade 60-40-18 or better, except as specifically designated otherwise.

4. **Aluminum**

 a) All plate, pipe, and structural shapes shall be new and shall conform to ASTM B209 (Plate), B308 (Shapes), B429 (Pipe and Tubing), B211 (Bar Stock), and applicable Federal Specifications for 6061-T6 alloy, unless otherwise designated.

 b) Aluminum pipe rail shall be of 6061-T6 alloy and be Schedule 40 or greater.

 c) Alloys and tempers for various members where not otherwise designated, shall be as required for proper forming and fabrication to meet or exceed structural requirements, and shall be of alloys specially produced to best achieve specified color anodized finishes. Contractor shall provide supporting printed recommendations from parent aluminum producer. For sheet fabricated members, Contractor shall use only homogenous aluminum products and no clad products.

 d) Contingent upon alloys being welded, Contractor shall use only inert gas shielded arc or resistance welding process with filler alloys as specified in the UBC. Contractor shall not use any process requiring a welding flux.
5. **Stainless Steel Bolts**

Except as otherwise designated or specified, all bolts, anchor bolts, cap screws, studs, and fasteners shall be Type 316 conforming to ASTM F-593; nuts shall conform to ASTM F-594.

6. **Flange Hardware**

With the exception of stainless steel flanges, all flange bolts, nuts, and fasteners shall be A325. Nuts shall be heavy hex cold-press semi-finished steel per ASTM A194-2,2H. Threads shall be lubricated with an approved anti-seize compound.

7. **Deferred Bolting Devices**

Deferred bolting devices are noted on the Construction Drawings as wedge anchors, expansion anchors, or epoxy anchors. Deferred bolting devices shall be used in lieu of anchor bolts only where specifically noted or detailed. Unless noted otherwise on the Construction Drawings, deferred bolting devices shall be 316 stainless steel, shall be installed in accordance with current I.C.B.O. Research Report Approval, and shall consist of the following:

a) Wedge anchors or expansion anchors shall be ITW Ramset/Redhead Trubolt Anchors, Hilti Kwik Bolt II Anchors, Simpson Strong-Tie Strong-Bolt 2 Anchors, or equal.

b) Epoxy anchors shall be ITW Ramset/Redhead Epcon C6+ Epoxy Anchors, Hilti HIT-RE 500-SD Adhesive Anchors, Simpson Strong-Tie Set XP Epoxy Anchors, or equal.

c) Wedge anchors or expansion anchors shall not be used inside the wet well or for anchorage of any vibrating machinery or equipment.

8. **Galvanizing**

a) **Iron and Steel.** Galvanizing shall conform to ASTM A123, with minimum weight per square foot of 1.25 ounces.

b) **Ferrous Metal Hardware Items.** Galvanizing shall conform to A153, with average coating weight of 1.25 ounces per square foot.

c) **Touch-Up Material for Galvanized Coatings.** Galvanized coatings marred or damaged during erection or fabrication shall be repaired by use of DRYGALV as manufactured by the American Solder and Flux Company, Galvalloy,
Galvion, or equal, applied in accordance with the manufacturer's instructions.

F. Electrical Conduit and Conductors

1. Conduit
 a) PVC-Coated Rigid Galvanized Steel Conduit. Conduit shall be Schedule 40 steel, pipe size, finished inside and out by hot-dipped galvanizing, and shall conform with ANSI C80.1 and UL. A PVC coating of 40 mils (minimum) thickness shall be bonded to the outer galvanized surface of the conduit and a urethane coating shall be applied to the interior surface of the conduit. The bond between the PVC coating and conduit surface shall be greater than the tensile strength of the plastic. A PVC jacketed coupling shall be furnished with each length of conduit. PVC-coated Rigid Galvanized Steel conduit and fittings shall be manufactured by Robroy, Occidental, or equal.

 b) Rigid Non-Metallic Conduit. Conduit shall be UL listed, sunlight resistant, Schedule 40 PVC conduit, rated for 90 degrees C conductors, and manufactured to NEMA TC-2 standards. Couplings and connectors shall be of the same manufacturer as the conduit and shall be joined as recommended by the manufacturer. All PVC conduits shall be terminated with approved connectors or end bells.

2. Conductors
 a) General

 Cables and wires shall be new, stranded conductors, solid copper, not smaller than #12 AWG (except shielded control wires and internal control wires in MCCs and control panels) unless otherwise shown on Drawings. Insulation shall bear manufacturer's trademark, insulation designation, voltage rating, and conductor size at regular intervals. Each type of cable or wire shall be the product of a single manufacturer.

 Conductors for power service, power feeders, power circuits, and lighting feeders, lighting circuits, and external control circuits shall be stranded copper, rated 600 volt, with 75 degrees C THWN insulation, UL approved, for installation underground, in concrete, in masonry, or in wet locations.
b) **Color Coding**

System conductors shall be factory color coded by integral insulation pigmentation with a separate color as specified herein. Conductors #6 AWG and larger may be color coded with an approved colored marking tape at all terminations and in all junction boxes, pull boxes, and manholes. Each voltage system shall have a color coded system that shall be maintained throughout the project. Approved conductor colors are as follows:

<table>
<thead>
<tr>
<th>Power System</th>
<th>Service</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>480V, 3 Phase, 4 Wire</td>
<td>Phase A</td>
<td>Brown</td>
</tr>
<tr>
<td></td>
<td>Phase B</td>
<td>Orange</td>
</tr>
<tr>
<td></td>
<td>Phase C</td>
<td>Yellow</td>
</tr>
<tr>
<td></td>
<td>Neutral</td>
<td>White</td>
</tr>
<tr>
<td>120/208/240V, 3 Phase, 4 Wire</td>
<td>Phase A</td>
<td>Black</td>
</tr>
<tr>
<td></td>
<td>Phase B</td>
<td>Red</td>
</tr>
<tr>
<td></td>
<td>Phase C</td>
<td>Blue</td>
</tr>
<tr>
<td></td>
<td>Neutral</td>
<td>White</td>
</tr>
<tr>
<td>All Equipment</td>
<td>Ground</td>
<td>Green</td>
</tr>
<tr>
<td>All System</td>
<td>Ground</td>
<td>Bare Copper</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Control System</th>
<th>Service</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLC (Status and Control)</td>
<td>Digital Input</td>
<td>Blue</td>
</tr>
<tr>
<td></td>
<td>Digital Output</td>
<td>Brown</td>
</tr>
<tr>
<td>120V</td>
<td>Positive</td>
<td>Red</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td>White</td>
</tr>
<tr>
<td>24V</td>
<td>Positive</td>
<td>Yellow</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td>Blue</td>
</tr>
<tr>
<td>12V</td>
<td>Positive</td>
<td>Red</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td>Black</td>
</tr>
<tr>
<td>120V</td>
<td>Switched Leg</td>
<td>Not Black, Red or Blue</td>
</tr>
<tr>
<td>480V</td>
<td>Switched Leg</td>
<td>Not Brown, Orange, or Yellow</td>
</tr>
</tbody>
</table>
G. Device Boxes, Junction Boxes, and Fittings

1. Device Boxes (Only Permitted for Locations Beyond 20' of Wet Well)

Unless otherwise noted on the Drawings, device boxes shall be malleable iron constructed with zinc or cadmium plating and enamel finish, minimum single gang size, deep box type, with threaded hubs and solid gasketed cover. Device boxes shall be properly sized for required circuitry or splicing. Surface mounted boxes shall be furnished with mounting lugs. Where located outdoors, device boxes shall be waterproof. Device boxes shall be Crouse-Hinds FD, Appleton FD, or equal.

2. Junction Boxes (Only Permitted for Locations Beyond 20' of Wet Well)

Unless otherwise noted on the Drawings, junction boxes shall be malleable iron constructed, rain tight, dust tight, minimum size 4"x4"x3", drilled and tapped or field installed with slip holes (alternate hub plates are acceptable). Junction boxes shall be properly sized for the number and sizes of conductors and conduit entering the box and required splicing. Provide feet where necessary for surface mounting. Junction boxes shall be Crouse-Hinds WAB, Appleton RS, or equal.

3. Device Boxes (Required for Locations Within 20' of Wet Well)

Where specified on the Drawings, device boxes shall be constructed of 316 stainless steel, minimum single gang size, deep box type, with gasket and 316 stainless steel solid cover. Device boxes shall be properly sized for required circuitry or splicing. Surface mounted boxes shall be furnished with mounting lugs or feet. Device boxes shall be NEMA 4X as manufactured by BEL Products, Inc., Cushing Manufacturing Co., or equal.

4. Junction Boxes (Required for Locations Within 20' of Wet Well)

Where specified on the Drawings, junction boxes shall be constructed of 316 stainless steel, with gasket and 316 stainless steel solid cover. Junction box minimum size shall be 4"x4"x3". Junction boxes shall be properly sized for required circuitry or splicing. Provide feet where necessary for surface mounting. Junction boxes shall be NEMA 4X as manufactured by BEL Products, Inc., Cushing Manufacturing Co., or equal.

5. Fittings

Conduit fittings shall be provided where shown on the Drawings or required to facilitate installation of the electrical conduit and equipment.
a) Conduit fittings shall be PVC coated metallic fittings and furnished by the same manufacturer as the PVC coated conduit to provide a complete and compatible protective system. PVC coated fittings and couplings shall have specially formed sleeves to tightly seal to conduit PVC coating. The sleeves shall extend beyond the fitting or coupling a distance equal to the conduit outside diameter or two inches, whichever is greater.

b) Non-metallic fittings shall be compatible with the non-metallic conduit used and shall be of the same manufacturer.

c) Fittings shall be of the shapes, sizes, and types required to facilitate installation or removal or conductors and cables from the conduit.

d) Connectors, couplings, locknuts, bushings, and caps used with PVC-coated Rigid Galvanized Steel conduit shall be threaded and thoroughly galvanized. All exposed surfaces shall be PVC coated. Bushings shall be insulated and shall be threaded malleable iron with thermoplastic liner. Insulated grounding bushings shall be provided with threaded malleable iron body, insulated thermoplastic liner throat, and "lay-in" ground lug with compression screw.

e) Metallic conduit unions shall be "Erickson" couplings, or approved equal. Running threads are not acceptable.

H. Channel (Unistrut) Supports

Unless otherwise specified, support channel (Unistrut) shall be single strut type, 1-5/8" x 1-5/8", 12 gauge ASTM A240, Type 316 stainless steel.

I. Protective Coatings

1. General

 a) All coating materials supplied under this provision shall be manufactured by Tnemec, PPG (Ameron), or Carboline, no substitutes. Products specified herein are those which have been evaluated and recommended by the manufacturers for the specific service. Only replacement product recommended by said manufacturers will be considered for substitutions.

 b) All materials shall be brought to job site in original sealed containers. Contractor shall provide coating material name, formula or specification number, batch number, color and date of manufacture to the District. Coating materials shall not be used until the District has inspected contents
and checked information on containers or label. Materials exceeding storage life recommended by the manufacturer shall be rejected.

c) All coatings and paints shall be stored in enclosed structures to protect them from weather and excessive heat or cold. Flammable coatings or paints must be stored to conform with city, county, state, and federal safety codes for flammable coating or paint materials. Water based coatings or paints shall be protected from freezing.

d) Contractor shall use products of same manufacturer for all coating systems unless approved in writing by the District.

e) All coatings shall comply with local, state, and federal air pollution control regulations including, but not limited to, SCAQMD Rule 1113 and Rule 1107. These regulations change frequently. If a listed coating does not meet local, state, and federal air pollution control regulations at the time the work is actually performed, the Contractor shall provide the manufacturer's compliant, recommended substitute coating at no additional cost to the District.

f) All colors and shades of colors of all coats of protective coating material shall be as selected by the District.

g) Finish and Protective Coating

Coatings shall be applied in accordance with the table below:

<table>
<thead>
<tr>
<th>Item</th>
<th>Coating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exterior Concrete Surfaces</td>
<td>No coating required.</td>
</tr>
<tr>
<td>Wet Well Below Grade Exterior Concrete Wall Surfaces</td>
<td>No coating required.</td>
</tr>
<tr>
<td>Wet Well Interior Concrete Wall Surfaces or Slabs</td>
<td>Coat per Service Condition D.</td>
</tr>
<tr>
<td>Concrete Masonry Surfaces</td>
<td>No coating required, unless shown on Drawings.</td>
</tr>
<tr>
<td>Exposed Ferrous Metal Piping, Valves, Fittings, and Appurtenances</td>
<td>Coat per Service Condition A. Color coat and label per Specification requirements.</td>
</tr>
<tr>
<td>Below Grade Ferrous Metal</td>
<td>Coat per Service Condition C.</td>
</tr>
</tbody>
</table>
Item Coating

<table>
<thead>
<tr>
<th>Item</th>
<th>Coating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipment and Motors</td>
<td>Factory coating. Touch up where damaged per manufacturers requirements.</td>
</tr>
<tr>
<td>Miscellaneous Ferrous Metal (Exterior)</td>
<td>Coat per Service Condition A.</td>
</tr>
<tr>
<td>Hot Dipped Galvanized Steel</td>
<td>No coating required.</td>
</tr>
<tr>
<td>Stainless Steel</td>
<td>No coating required.</td>
</tr>
<tr>
<td>Exposed PVC and CPVC Piping</td>
<td>Coat per Service Condition E.</td>
</tr>
<tr>
<td>Aluminum</td>
<td>No coating, except where bearing against or embedded in concrete.</td>
</tr>
<tr>
<td>NEMA 1, 12, or 3R Electrical Panels</td>
<td>Factory coating, baked enamel. Touch up where damaged.</td>
</tr>
<tr>
<td>Electrical Device Boxes</td>
<td>Factory PVC coating.</td>
</tr>
<tr>
<td>Pipe Supports</td>
<td>Hot dipped galvanized or stainless steel as noted.</td>
</tr>
<tr>
<td>Exposed Electrical Conduit</td>
<td>No additional coating required.</td>
</tr>
<tr>
<td>Below Grade Copper Tubing and Brass Pipe</td>
<td>25 mil (min.) Aqua Shield or Stream Line Protec.</td>
</tr>
</tbody>
</table>
h) **Pipe Color Code and Labeling**

All exposed and/or unburied pipe, including steel, copper and brass tubing, galvanized pipe, polyvinyl chloride pipe, fiberglass reinforced pipe, and stainless steel pipe shall be identified by color to show its use/function. Color bands of an approved tape type may be used on PVC, FRP, and stainless steel pipe and all other pipe not readily susceptible to painted finish. Bands shall be adhesive type with extra strength and suitable for continuous duty at 250°F. All markers shall have a protective silicone film. Color shall be as specified in the table below:

<table>
<thead>
<tr>
<th>Duty</th>
<th>Color Code</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Vent</td>
<td>Gray</td>
<td>AV</td>
</tr>
<tr>
<td>Air Valve Drain</td>
<td>Gray</td>
<td>AVD</td>
</tr>
<tr>
<td>Drain</td>
<td>Gray</td>
<td>D</td>
</tr>
<tr>
<td>Four Air</td>
<td>White</td>
<td>FA</td>
</tr>
<tr>
<td>Potable Water</td>
<td>Safety Blue</td>
<td>PW</td>
</tr>
<tr>
<td>Raw Sewage Backflush</td>
<td>Brown</td>
<td>RSB</td>
</tr>
<tr>
<td>Raw Sewage Discharge</td>
<td>Brown</td>
<td>RSD</td>
</tr>
<tr>
<td>Raw Sewage Forcemain</td>
<td>Brown</td>
<td>RSF</td>
</tr>
<tr>
<td>Sanitary Drain</td>
<td>Brown</td>
<td>SD</td>
</tr>
<tr>
<td>Seal Water</td>
<td>Gray</td>
<td>SW</td>
</tr>
</tbody>
</table>

Both the direction of the fluid flow and the duty label of the pipe shall be stenciled on all above grade or exposed pipe (in Safety Yellow) at least once every twenty-five (25) feet and at every change of direction. Color bands (if used) shall be spaced at fifteen (15) foot intervals and every change in direction. The size of the letters and color bands shall be as specified in the table below:

<table>
<thead>
<tr>
<th>Outside Diameter of Pipe or Covering (Inches)</th>
<th>Width of Color Band (Inches)</th>
<th>Height of Label Letters (Inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4 to 1-1/4</td>
<td>1</td>
<td>1/2</td>
</tr>
<tr>
<td>1-1/2 to 2</td>
<td>1</td>
<td>3/4</td>
</tr>
<tr>
<td>2-1/2 to 6</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>8 to 10</td>
<td>6</td>
<td>2-1/2</td>
</tr>
</tbody>
</table>
Outside Diameter of Pipe or Covering (Inches) | Width of Color Band (Inches) | Height of Label Letters (Inches)
---|---|---
Over 10 | 6 | 3-1/2

i) **Stencil Valve Tag Numbers on Piping**

After the painting of process piping is complete, the Contractor shall stencil the tag numbers, as supplied by the District, of all valves on the pipe adjacent to the valve for pipe 2 inches and over. Characters shall be 1 inch high minimum and shall be oriented to be visible from the valve operating position. When the valve has extended operator shaft or chain operator, the number shall be placed both at the operating position and at the valve, if practicable. The latter requirement does not apply if the valve is buried or in a pit. Valves in pipes under 2 inches shall have characters as large as the pipe will permit or at the District's option, on an adjacent surface. Characters shall be preferably white; however, if this would not provide sufficient contrast to the pipe, the District may select another color. Paint used shall be of the same type and quality as used for painting the pipe.

2. **Service Condition A**

Ferrous metals (excluding stainless steel) subject to outdoor exposure such as outdoor tanks, piping, valves, and equipment, etc. shall receive the following surface preparation and coating:

a) **Surface Preparation.** All surfaces shall be field sandblasted in conformance with Steel Structures Painting Council Specifications SSPC-SP10 and National Association of Corrosion Engineers Surface Finish NACE No. 2 (Near-White Blast Cleaning) to achieve a 1.5-2.5 mil (40-60 micron) blast profile.

b) **Application.** Application shall be in strict accordance with manufacturer's recommendations. The minimum and maximum required times between coats shall be per the manufacturer's product data sheet. Written requests for shop surface preparation and application of the prime coat shall be reviewed and approved by District on a case-by-case basis. If approved by District, shop applied prime coat surface shall be field scarified by brush-blasting prior to application of intermediate coat.

c) **Coating System.** Except as otherwise noted, the prime coat shall have a minimum dry film thickness (MDFT) of 4.0 mils. The intermediate coat shall have a MDFT of 4.0 mils and the finish coat shall have a MDFT of 2.0 mils.
The total dry film thickness of the complete system shall be 10.0 mils, minimum.

PPG System
Primer - Amerlock 2VOC
Intermediate - Amerlock 2VOC
Finish - Amershield VOC

Carboline System
Primer - Carboguard 890VOC
Intermediate - Carboguard 890VOC
Finish - Carbothane 134 MC

Tnemec System
Primer - Series L69 Epoxyline
Intermediate - Series L69 Epoxyline
Finish - Series 1080 Endurashield

3. Service Condition B

Ferrous metals (excluding stainless steel) submerged or intermittently submerged in sewage or similar corrosive liquid, including all ferrous metal located within the lift station wet well, shall receive the following surface preparation and coating:

a) **Surface Preparation.** All surfaces shall be field sandblasted in conformance with SSPC-SP5 and NACE No. 1 (White Metal Blast Cleaning) to achieve a 3 mil (75 micron) angular anchor blast profile.

b) **Application.** Application shall be in strict accordance with manufacturer's recommendations. If recoating is required to correct pinholes, holidays or insufficient coating thickness; surfaces shall be scarified by brush-blasting prior to recoat.

c) **Coating System.** Except as otherwise noted, one or two coats shall be applied at a MDFT of 30.0 mils.

PPG System
Sigma Novaguard 840

Carboline System
Carboguard 954HB

Tnemec System
Series 435 Perma-Glaze
4. Service Condition C

Buried metal surfaces shall receive the following surface preparation and coating:

a) **Surface Preparation.** All surfaces shall be cleaned in conformance with SSPC-SP10/NACE 2 (Near White Blast Clean) with a 2 mil anchor blast profile.

b) **Application.** Application shall be in strict accordance with manufacturer's recommendations. The minimum time required between coats and prior to backfilling shall be per the manufacturer's product data sheet.

c) **Coating System.** Except as otherwise noted, two or more coats shall be applied to a minimum total dry film thickness of 30 mils.

PPG System Sigma Novaguard 840
Carboline System Carboguard 954HB
Tnemec System Series 435 Perma-Glaze

5. Service Condition D

Concrete subject to continuous or intermittent submergence in sewage, including all interior surfaces of the wet well, shall receive the following surface preparation and coating:

a) **Surface Preparation.** All surfaces shall be thoroughly cleaned by sandblasting in conformance with SSPC–SP13/NACE 6, ICRI CSP 5 surface preparation of concrete or other approved methods, removing all traces of previous materials. Remove all loose concrete by chipping, etc. to leave only sound firmly bonded concrete. All cracks and voids shall be filled with the specified epoxy filler and surfacer. Final surface shall be smooth and free of voids, cavities, dirt, dust, oils, grease, laitance or other contaminants.

b) **Application.** Application shall be by spray-on and/or trowel method and shall be in strict accordance with manufacturer's recommendations. The minimum and maximum required times between coats shall be per the manufacturer's product data sheet. If recoating is required to correct pinholes or insufficient system coating thickness, surfaces shall be brush-blasted prior to recoat.
c) **Coating System.** The coating system shall be specifically manufactured for highly corrosive environments caused by immersion and intermittent immersion in municipal wastewater. Minimum total dry film thickness of the coating system shall be 125 mils.

Carboline System
Finish - Plasite 5371

Tnemec System
Filler/Surfacer - Mortar Clad – Series 218
Lining – Perma-Shield H2S – Series 434
Finish – Perma-Glaze – Series 435

Saueriesen System
Filler/Surfacer - Resto Krete No. 209
Epoxy Lining - Sewergard No. 210X

6. **Service Condition E**

Exposed PVC and CPVC piping shall receive the following surface preparation and coating (coating to be used for this category shall be certified by the PVC and CPVC piping manufacturer to be completely acceptable and non-injurious to the material):

a) **Surface Preparation**

Surface preparation shall consist of hand sanding to remove gloss. All remaining dust shall be removed with vacuum brushing or tack rag. Sanded surfaces shall not be washed with either solvent or water.

b) **Application**

Application shall be in strict accordance with manufacturer's recommendations.

c) **Coating System**

Except as otherwise noted, two coats shall be applied at 2.0 mils per coat to a total 4.0 mil MDFT for the system.

Carboline System
Carbothane 134 MC

PPG System
Amershield VOC

Tnemec System
Series 80 Endurashield
7. Architectural Paint Finishes

Concrete Masonry Paint on Concrete

Frazee Paint System: First Coat - 203 Duratec II Exterior 100% Acrylic Flat

Sherwin Williams System: First Coat – Loxon Concrete Masonry Primer

Second Coat – Loxon Acrylic Coating

Vista Paint System: First Coat - Vista 4600 Uniprime II Masonry Primer

Second Coat - Vista 2000 Duratone 100% Acrylic Flat

Third Coat - Vista 2000 Duratone 100% Acrylic Flat

Dunn Edwards System: First coat - Eff Stop Premium Primer (ESPR00)

Second Coat - Evershield 100% Acrylic (EVSH10)

Third Coat - Evershield 100% Acrylic (EVSH10)

8. Aluminum Metal Isolation

All aluminum bearing on, or embedded in, concrete shall be coated with a wash primer (0.5 mils) followed by one coat (8 mils) of heavy bodied bituminous paint, Carboline Bitumastic Super Service Black or Tnemec 464-465.
J. **Asphalt Concrete Pavement**

Unless specified otherwise on the Construction Drawings, all asphalt concrete pavement shall be per District Detailed Provisions, Sections 02201 and 02513 and as specified hereinafter.

Asphalt concrete pavement shall be hot placed to 4" thickness minimum placed over 6" of crushed miscellaneous base (per SSPWC Section 200-2.4) and compacted to 95 percent relative compaction minimum. Pavement shall be placed in two lifts. The first lift shall be C1-PG64-10 and the second lift shall be D2-PG64-10.

Unless specified otherwise, prior to placing crushed miscellaneous base, the subgrade shall be scarified to a minimum depth of 6" and then compacted to 95 percent relative compaction.

K. **Danger and Warning Signs**

Equipment Danger Signs and Warning Signs shall be provided as specified herein. Signs shall be constructed of 40-mil aluminum with rounded corners and mounting holes at each corner. Signs shall resist fading in direct sunlight and be suitable for temperatures ranging from -40°F to 176°F. Manufacturer shall submit a list of all print and background color combinations for confirmation by District. Unless noted otherwise, text size shall be 3/4" tall and signs shall be sized accordingly. Indoor/outdoor signs shall be Style No. M0719 by Seton, or approved equal.

Typical Danger Sign (sign shall be stenciled directly on access hatch, or mounted to access hatch with stainless steel rivets, as directed by District):

- **Line 1**: "DANGER" Yellow letters on black background
- **Line 2**: "CONFINED SPACE" black letters on yellow background
- **Line 3**: "PERMIT REQUIRED"
- **Line 4**: "PRIOR TO ENTRY"
- **Location**: Mount on wet well access hatch

Danger Sign (One (1) required):

- **Line 1**: "DANGER" white letters on red background
- **Line 2**: "EQUIPMENT" black letters on white background
- **Line 3**: "STARTS" black letters on white background
- **Line 4**: "AUTOMATICALLY" black letters on white background
- **Location**: Mount on generator enclosure
Submersible Lift Station with Standby Power
Section 11200 – 40

Danger Sign (One (1) required):

Line 1 "DANGER" white letters on red background
Line 2 "EAR" black letters on white background
Line 3 "PROTECTION" black letters on white background
Line 4 "REQUIRED" black letters on white background
Location Mount on generator enclosure

Danger Sign (Three (3) required):

Graphic Symbol Hazmat label in compliance with NFPA No. 704
Line 1 "DANGER" white letters on red background
Line 2 "DIESEL" black letters on white background
Line 3 "FUEL" black letters on white background
Location Mount on generator enclosure and both gates

Typical Warning Sign:

Line 1 "WARNING" white letters on red background
Line 2 "DO NOT DRINK" black letters on white background
Location Mount adjacent to each hose bib

2.08 EMERGENCY STANDBY POWER GENERATOR SET
Contractor shall furnish and install a 4-cycle, 1800 rpm, diesel engine generator set as manufactured by Olympian (supported by Caterpillar), Caterpillar, Cummins, or Generac, (no substitutes). Generator set shall be capable of starting and operating all motor loads and low voltage transformer loads shown on the Construction Drawings. Maximum allowable instantaneous voltage dip as defined per NEMA MG1 shall be 20 percent. As a minimum, the generator set standby power rating shall be as shown on the Construction Drawings and shall be based on site conditions noted below.

System Voltage: 480 Volts AC, three phase, four-wire, 60 hertz.

Site Conditions: Altitude 1500 ft. (minimum - Contractor shall confirm for actual project site), and ambient temperature of 110 degrees F.

A. Permits and Requirements for South Coast Air Quality Management District (SCAQMD)

1. Permits

A permit to construct and to operate is required from the SCAQMD for any emergency standby generator set with a rated brake horsepower greater than 50 (>50 bhp). Permit must be obtained prior to construction of the generator facilities and generator installation. Time is of the essence in providing generator submittals for District's approval and for the permit applications. The
emergency standby power system shall conform to all requirements of SCAQMD for standby generators. Manufacturer shall equip the engine generator with the necessary devices (such as a Level 3 diesel particulate filter verified by California Air Resources Board (CARB)) to meet the current SCAQMD regulations for the operation of a diesel emergency standby generator. Engine generator set shall be "pre-certified"/"pre-approved" by SCAQMD for emergency standby power service. Engine generator set shall have the highest available tier rating, in accordance with EPA Tier Certification Requirements.

Manufacturer shall be responsible for providing all engine data required as part of the SCAQMD permit process. Contractor shall provide District with application forms for the SCAQMD Permit to Construct and Operate. Application forms shall be complete except for District information and signature. District shall execute application and return same to Contractor to submit to SCAQMD for approval. Developer shall pay all required permit fees. The genset shall be constructed and operated in accordance with the conditions of the SCAQMD Permit to Construct and Operate.

2. SCAQMD Rule 1470

The generators shall meet all requirements and emissions standards set forth in SCAQMD Rule 1470.

If required by SCAQMD Rule 1470 to install a diesel particulate filter (DPF), the generator shall be furnished with a DPF to reduce the diesel PM in accordance with SCAQMD Rule 1470. The DPF shall meet the following requirements:

a) The DPF shall utilize active regeneration technology or a low temperature passive DPF may be used. Please note for a low temperature passive DPF to be used, it must operate at exhaust temperatures that are low enough not to require a load bank for regeneration.

b) The DPF shall be manufactured by Johnson Matthey, Clear Air System, Miratech, or Rypos Inc.

c) The DPF shall be at least a California Air Resources Board (CARB) Level 3 verified for the specific make/model engine that will be installed with a particulate matter (PM) reduction greater than 85%.

d) The CARB Executive Order for the DPF shall either list compatibility to the generator engine family name or approval shall be granted by SCAQMD.
Submersible Lift Station with Standby Power
Section 11200 – 42

 e) The engine must be a certified CI engine that meets the following standards:

 (i) PM emission standards specified in SCAQMD Rule 1470 Part (c)(2)(C)(iv) or (c)(2)(C)(v) or (c)(2)(C)(vi).

 (ii) Emission standards specified in SCAQMD Rule 1470 Part (c)(2)(C)(vii) for other pollutants.

 f) Regeneration shall be automatic and shall keep the filter cartridges functioning at low exhaust temperature and generator load level.

 g) Differential pressure sensors to initiate and control regeneration process as a function of back pressure shall be provided if an active DPF is used. For active and passive DPFs, back pressure must not exceed 90% of engine manufacturer's specification and shall be coordinated with other exhaust system components (e.g. silencers, piping, etc.). A Backpressure monitor shall be provided for active and passive DPFs to notify District when high backpressure limit is reached. A N.O. dry contact that closes if the backpressure limit is reached shall be provided for District use.

 h) If an active DPF is used, an alarm shall be provided if there is no power from the generator to the DPF. A N.O. dry contact that closes if there is a loss of power to the DPF shall be provided for District use.

 i) Suitable for horizontal mounting with flanged inlets and outlets.

 j) Housing and flanges shall be stainless steel.

 k) Remote status panel with LED visual indication and dry contact customer alarms.

B. Performance

Voltage regulation shall be +/- 1.0 percent for any constant load between no load and rated load.

An electronic governor system shall provide automatic isochronous frequency regulation from steady state no load to steady state rated load. Random frequency variation with any steady load from no load to full load shall not exceed plus or minus 0.25 percent.
The diesel engine-generator set shall be capable of single step load pick up of 100 percent nameplate kW and power factor, less applicable derating factors, with the engine-generator set at operating temperature.

C. **Engine**

The engine shall be diesel, 4 cycle, radiator and fan cooled. The horsepower rating of the engine at its minimum tolerance level shall be sufficient to drive the alternator and all connected accessories. Two cycle engines are not acceptable. The engine shall be manufactured by Caterpillar, Cummins, John Deere, or Perkins, no substitutes. Engine accessories and features shall include:

The engine-generator set shall be mounted on a heavy duty steel base (skid) to maintain alignment between components. The skid shall incorporate a battery tray with hold-down clamps within the rails.

The generator set shall be equipped with a skid-mounted, engine-driven radiator with blower fan and all accessories. The cooling system shall be sized to operate at full rated load and 110 degrees F ambient air entering the generator set enclosure. The cooling system shall be filled with 50/50 ethylene glycol/water mixture by the equipment supplier. Rotating parts shall be guarded against accidental contact per OSHA requirements. The generator set supplier shall be responsible for providing a properly sized cooling system based on the enclosure static pressure restriction.

A DC electric starting system with positive engagement shall be furnished. The motor voltage shall be as recommended by the engine manufacturer. The electric starter shall be capable of a minimum of three complete cranking cycles without overheating.

Positive displacement, mechanical, full pressure, lubrication oil pump.

Full flow lubrication oil filters with replaceable spin-on canister elements and dipstick oil level indicator.

An engine driven, mechanical, positive displacement fuel pump. Fuel filter with replaceable spin-on canister element.

Replaceable dry element air cleaner with restriction indicator.

All fuel piping shall be black iron, or flexible fuel hose rated for this service. Flexible fuel lines rated 300 degrees F and 100 PSI.

Engine mounted battery charging alternator and solid-state voltage regulator.
D. **AC Generator**

The synchronous generator shall be a single bearing, self-ventilated, drip-proof design in accordance with NEMA MG 1 and directly connected to the engine flywheel housing with a flex coupling. The insulation material shall meet NEMA standards for Class H insulation and be impregnated in a polyester varnish or vacuum impregnated with epoxy varnish to be fungus resistant. Temperature rise of the rotor and stator shall not exceed NEMA class F (130 ºC rise by resistance over 40 ºC ambient). The excitation system shall be of brushless construction.

The generator shall be capable of delivering rated output (kVA) at rated frequency and power factor, at any voltage not more than 5 percent above or below rated voltage.

A permanent magnet generator (PMG) shall be included to provide a reliable source of excitation power for optimum motor starting and short circuit performance. The PMG and controls shall be capable of sustaining and regulating current supplied to a single phase or three phase fault at approximately 300 percent of rated current for ten seconds during a fault condition.

E. **Voltage Regulator**

An automatic voltage regulator (AVR) shall be provided to maintain generator output voltage within +/- 1.0 percent for any constant load between no load and full load. The regulator shall be a totally solid state design, which includes electronic voltage buildup, volts per Hertz regulation, over-excitation protection, loss of sensing protection, temperature compensation, shall limit voltage overshoot on startup, and shall be environmentally sealed.

F. **Engine-Generator Set Control**

Provide a generator set mounted control panel for complete control and monitoring of the engine and generator set functions. Panel shall include automatic start/stop operation, cycle cranking, digital AC metering (0.5 percent true rms accuracy) with phase selector switch, shutdown sensors and alarms with horn and reset, adjustable cool down timer and emergency stop push-button.

Critical components shall be environmentally sealed to protect against failure from moisture and dirt. Components shall be housed in a NEMA 1/IP22 enclosure with hinged door. The panel itself shall be mounted on a separate support stand isolated from the engine / generator arrangement. Panel / breaker arrangements mounted on the generator set in such a way that access to the AC Generator terminal box is restricted in any way whatsoever are not acceptable.
The generator set mounted control shall include the following features and functions:

1. **Generator Set Metering**

 The generator set shall be provided with a metering set with the following features and functions:

 a) Engine oil pressure
 b) Coolant temperature
 c) Engine RPM
 d) System DC volts
 e) Engine running hours
 f) Generator AC volts
 g) Generator frequency
 h) Generator AC amps

2. **Local Alarm and Status Indicators**

 The generator set shall be provided with the following alarm and status indicating lamps for protection and diagnostics according to NFPA 110, Level 1:

 a) Low oil pressure
 b) High water temperature
 c) Low coolant level
 d) Overspeed
 e) Overcrank
 f) Emergency stop depressed
 g) Approaching high coolant temperature
 h) Approaching low oil pressure
 i) Low coolant temperature
 j) Low voltage in battery
 k) Control switch not in auto position
 l) Low fuel main tank
 m) Battery charger ac failure
 n) High battery voltage
 o) Generator set main circuit breaker open
 p) DPF back pressure (or spare if DPF not required)
 q) Loss of power to DPF (or spare if DPF not required)
 r) One (1) spare
3. Control Functions / Interfaces

Provide the following control functions:

a) Terminals located inside the control panel for REMOTE EMERGENCY STOP
b) ON / OFF / AUTO control switch
c) GENERATOR RUN form "C" dry contact set rated 2A @ 30VDC (one N.O., one N.C.).
d) COMMON ALARM form "C" dry contact set rated 2A @ 30VDC to indicate existence of any alarm or shutdown condition on the generator set (one N.O., one N.C.).
e) A fused 20 amp 12VDC power supply circuit shall be provided for customer use. DC power shall be available from this circuit at all times from the engine starting/control batteries.

G. Generator Set Auxiliary Equipment and Accessories

1. Water Jacket Heater

An engine mounted, thermostatically controlled, circulation type water jacket heater shall be provided for each engine. The heater shall be sized by the generator set manufacturer to maintain jacket water temperature at 90 degrees F, and shall be 120 or 240 volt, single phase, 60 hertz. Provide proper power supply circuits for the heater as required for the voltage and load of the heater, connected to a lighting panel circuit as shown on the Construction Drawings.

2. Space Heater

Provide a generator mounted space heater, 120 VAC, 1 phase.

3. Vibration Isolation

Provide vibration isolators, pad type, quantity as recommended by the generator set manufacturer and suitable for mounting to a concrete equipment base that are IBC Certified for seismic (Zone 4) applications. Generator set manufacturer shall provide the required type, size, location, and embedment depth of generator set anchor bolts. Manufacturer shall provide equipment anchorage calculations prepared by a registered professional civil or structural engineer in the State of California. Calculations shall be prepared in accordance with the Uniform Building Code (latest edition) for Seismic Zone 4 essential facilities.
4. Exhaust System

Engine shall be provided with a properly sized critical or hospital type silencer (or a diesel particulate filter (DPF) that incorporates a critical or hospital type silencer, if required), companion flanges, and flexible stainless steel exhaust fitting. The silencer (or DPF) and exhaust piping shall be factory mounted so that their weight is not supported by the engine nor will exhaust system growth due to thermal expansion be imposed on the engine. Exhaust pipe size shall be sufficient to ensure that exhaust backpressure does not exceed the maximum limitations specified by the engine manufacturer. The exhaust pipe outlet shall be provided with a removable rain cap (sized the same diameter as the outlet).

5. Starting and Control Batteries

A lead-acid storage battery set of the heavy-duty diesel starting type shall be provided. Battery voltage shall be compatible with the starting system. The battery set shall be rated no less than 75-ampere hours. All necessary battery cables and clamps shall be provided.

Battery tray(s) shall be provided for the batteries and shall conform to NEC 480-7(b). Battery tray(s) shall be resistant to deterioration by battery electrolyte. Further, construction shall be such that any spillage or boil-over battery electrolyte shall be contained within the tray to prevent a direct path to ground.

6. Battery Charger

A UL listed, current limiting battery charger shall be furnished to automatically recharge batteries. Charger shall float at 2.17 volts per cell and equalize at 2.33 volts per cell. It shall include overload protection, silicon diode full wave rectifiers, voltage surge suppressor, DC ammeter, DC voltmeter, and fused AC input. AC input voltage shall be 120 volts, single phase. Charger shall be in a NEMA 1 enclosure and shall be mounted within the generator set enclosure or the automatic transfer switch panel.

7. Generator Set Main Circuit Breaker

Provide a generator mounted main circuit breaker, molded case construction, 3 pole, NEMA 1/IP22. Circuit breaker rating shall be as shown on the Construction Drawings. Circuit breaker shall utilize a thermal magnetic trip unit and DC shunt trip. The circuit breaker shall be UL listed with shunt trip device connected to engine/generator safety shutdowns. Circuit breaker shall be housed in a steel NEMA 1 enclosure. Circuit breaker shall be provided with a N.C. dry contact that opens when the circuit breaker is open.
8. Outdoor Sound Attenuated Enclosure

a) Generator set shall be provided with a weather resistant, sound attenuated enclosure constructed of HR4P steel. Acoustical foam shall be provided between all supports and inside doors. Sound baffles shall be provided at air intake and air discharge openings. The enclosure shall attenuate generator set sound levels to 75 dBA at a horizontal distance of 23 feet with the generator set running under full load.

b) Number of doors on enclosure shall be as required so that all normal maintenance operations, such as lube oil change, filter change, belt adjustment and replacement, hose replacements, control panel access, etc., may be accomplished without disassembly of any enclosure components. Access doors shall be fabricated of the same material as the enclosure walls and shall be reinforced for rigidity. Doors shall be equipped with rubber seals. Door handles shall be key lockable, all doors keyed alike, and hinges shall be zinc die cast or stainless steel. Fasteners shall be zinc plated or stainless steel.

c) Enclosure air handling will be sized and designed by the manufacturer for a maximum 0.5" static pressure drop through enclosure. Air intake and discharge openings shall be screened to prevent the entrance of rodents. The system shall include a cooling and combustion air inlet silencer system, an equipment enclosure section, and a cooling air discharge silencer section.

d) Radiator access shall be through a hinged, lockable cover on the enclosure. Engine cooling fan and charging alternator shall be fully guarded to prevent injury.

e) Engine exhaust silencer shall be internally mounted in the enclosure to maintain the weather resistant integrity and aesthetic appearance of the system. Externally mounted silencers will not be permitted.

f) All hinges and latches shall be rust resistant. Fasteners shall be zinc plated or stainless steel. All sheet metal shall be primed for corrosion protection and finish painted with the manufacturer's standard color utilizing electrostatically applied powder baked polyester paint.

9. Sub-Base Fuel Storage Tank

Provide a UL listed double walled, sub-base fuel storage tank. The double walled fuel storage tank shall be constructed of corrosion resistant aluminized steel and shall be provided with over-fill protection and tank rupture and low fuel level
alarms. The fuel storage tank, as installed, shall meet all local and regional requirements for above ground diesel storage tanks.

The sub-base fuel storage tank shall contain: drain, baffles, vent, fuel gauge, and outside filler tube with locking cap. The tank shall be located within the generator set structural steel support frame and shall be of all welded construction. Fuel tank shall have sufficient capacity to allow continuous operation of the generator set for a minimum of 24 hours at 100 percent rated load. The fuel tank location shall not encroach upon the required electrical stub-up area directly beneath the generator set main circuit breaker box.

A full tank of fuel shall be provided at Contractor's expense before final acceptance of the lift station by the District.

10. Miscellaneous Accessories

Provide extended lube oil and radiator drains equipped with 316 stainless steel threaded ball valves, extension piping (to outside of enclosure) and threaded end caps.

11. Factory Testing

The assembled generator set shall be tested in the factory. The tests shall be performed at the manufacturer's regular place of business and shall be conducted on a "resistive load bank". These tests may be witnessed by the District's representative. Manufacturer shall provide minimum notice of five (5) working days prior to testing. Three (3) certified copies of the test results shall be forwarded to the District within five (5) days following the tests. Test results shall be reviewed and approved by the District prior to shipping generator set to the project site.

As a minimum, factory testing shall consist of the following:

a) Perform engine manufacturer's recommended pre-starting checks.

b) Start engine and make engine manufacturer's after-starting checks during a reasonable run-in or warm-up period.

c) Run engine continuously as follows:

 (i) Operate the engine for 30 minutes at 1/2 full rated load.

 (ii) Follow above run immediately for 30 minutes at 3/4 full rated load.
(iii) Follow above run immediately for 30 minutes at full rated load.

(iv) If safe limits as specified hereunder and recommended by the engine manufacturer are exceeded during the preceding test, the necessary changes and adjustments shall be made and the complete test shall be repeated.

d) Instrumentation: The following parameters shall be read and recorded at 15-minute intervals throughout the test:

(i) Engine oil pressure, jacket water temperature, engine RPM, and ambient air temperature.

(ii) Generator voltage, amperage, and frequency.

e) Control test: Demonstrate operation of all local alarms and status indicators as specified in Part 2.08F.2 herein.

2.09 AUTOMATIC TRANSFER SWITCH

A. General

The automatic transfer switch shall be an integral part of power service and motor control center, and shall be mounted and wired at the factory, including mounting and wiring of door-mounted accessories. The automatic transfer switch (ATS) shall be as manufactured by ASCO, Olympian, Russelectric, or equal. The ATS and accessories shall be UL listed and labeled and tested per UL Standard 1008 and comply with NEMA ICS2-447, NFPA 70, NFPA 99, and NFPA 110.

The ATS shall include all necessary control devices and circuitry for a complete and operable system capable of the following operations:

1. Supply normal (utility) power to the motor control center when normal power is available. Supply standby power from the emergency standby power generator set when normal power fails or is disconnected.

2. Detect sustained loss or deterioration of "normal" power (power failure), signal the emergency standby generator to start and run when "normal" power fails, and when "standby" power from the generator is within proper limits of voltage and frequency, transfer to supply "standby" power to the motor control center.

3. Detect sustained restoration of "normal" power within proper limits of voltage and frequency, and then retransfer to supply "normal" power to the motor control center.
4. Provide dry contacts for connection to control panel to indicate normal power “on”, loss of "normal" power, and "standby" power on.

B. Ratings and Components

The ATS controls and accessories shall be rated for continuous (24-hour) duty as installed. The switch shall be an open transition, 3-pole, double-throw, having the "normal" and "standby" positions mechanically interlocked, with microprocessor controller to provide automatic operation and shall be suitable for application to a 3-phase, 3-wire, 60 Hz, 480-volt system. The minimum continuous current rating at 480 volts shall be as indicated on the Construction Drawings. The ATS shall be rated to withstand a short circuit current of 50,000 amperes (symmetrical) without parting of the switch contacts. The ATS shall be capable of manual operation under load.

The transfer switch shall be electrically operated and mechanically held. The electrical operator shall be a momentarily energized, single-solenoid mechanism. The switch shall be mechanically interlocked to ensure only two possible positions, normal or emergency. All main contacts shall be silver composition.

All switch and relay contacts, coils, springs, and control elements shall be serviceable or removable from the front of the switch enclosure without disconnection of drive linkages, power conductors, or control conductors.

C. Automatic Controls

Controls shall be solid-state and designed for a high level of immunity to power line surges and transients, demonstrated by test to IEEE Standard C62.41 and C62.45.

Solid-state undervoltage sensors shall simultaneously monitor both sources. Pick-up and drop-out settings shall be adjustable. Voltage sensors shall have field calibration of actual supply voltage to nominal system voltage.

Automatic controls shall signal the emergency standby generator set to start upon signal from the normal source sensor. Solid-state time delay start, adjustable from 0.1 to 10 seconds (factory set at 3 seconds) shall avoid nuisance start-ups. Battery voltage starting contacts shall be silver, dry type contacts factory wired to a field wiring terminal block.

The switch shall transfer when the emergency power source reaches the set point. Provide a solid-state time delay on transfer, adjustable from 0.1 to 10 seconds.
The switch shall retransfer the load to the normal power source after a time delay retransfer, adjustable from 1 minute to 30 minutes (factory set at 5 minutes). Retransfer time delay shall be immediately bypassed if the emergency power source fails.

Controls shall signal the engine-generator set to stop after a cool down time delay, adjustable from 1 minute to 30 minutes, beginning on return to the normal power source.

Power for transfer operation shall be from the source to which the load is being transferred.

Provide solid state exerciser clock to set the day, time, and duration of emergency standby power generator set exercise/test period. Provide a with/without load selector switch for the exercise period.

D. Front Panel Devices (Inside MCC NEMA 3R Wrap)

Provide control switches mounted on panel inside door front for:

Test: Simulates normal power loss to control for testing of generator set. Controls shall provide for a test with or without load transfer.

Retransfer: Momentary position to override retransfer time delay and cause immediate return to normal source, if available.

Provide LED-type switch position and source available indicator lamps on the front of the transfer switch cabinet.

E. Auxiliary Contacts

One normally closed dry contact, which shall open when normal power fails for "power failure" signal to RTU shall be provided. One normally open dry contact, which shall close when the ATS is connected to the emergency source for "emergency power" signal to RTU shall be provided.

2.10 PRECAST REINFORCED CONCRETE WET WELL

Wet well shaft shall be constructed of Class IV reinforced concrete pipe (RCP) per ASTM C76 with two circular reinforcement cages (quadrant or elliptical cages will not be allowed) and flush bell-and-spigot joints. Bell-and-spigot joints shall be provided with rubber gaskets and shall be suitable for a hydrostatic head of 50' per ASTM C361. Prior to backfill of the wet well structure, Contractor shall perform a field hydrostatic test by filling the wet well shaft with potable water up to the top of the shaft in accordance with Specification Section 03300, Part 3.17. No visible leakage will be allowed.
Pipe sections (except top and bottom sections) shall be minimum 8’ long. Top and bottom section lengths shall be adjusted to achieve the required wet well and bypass manhole height and to provide 12” minimum clearance between RCP joints and pipe penetrations.

To assist Contractor during installation, RCP may be furnished with 316 stainless steel lifting lugs cast into the concrete during fabrication. Pipe manufacturer shall be responsible for lifting lug design and placement. Lifting aids installed after the pipe has been fabricated, by drilling or coring the pipe, will not be acceptable.

RCP shall be as manufactured by Thompson Pipe Group-Rialto, Ameron, or equal.

2.11 STAINLESS STEEL PASSIVATION
All stainless steel sub-assemblies shall be passivated after welding for corrosion resistance and to provide a superior surface finish. All stainless steel products shall be fabricated in the shop and passivated at the point of manufacture. Field fabrication or field passivation will not be permitted except for the outer flanges of the discharge piping through the wet well wall per Construction Drawings. Field passivation of the field welded discharge pipe flanges shall be accomplished using pickling paste.

All welds, heated areas of stainless steel parts, and heat affected zones of welds shall be cleaned, descaled and passivated per ASTM A 380. Passivation by use of pastes or sprays will not be permitted. Unless specified otherwise, passivation by means of electrochemical treatment, including electropickling or electropolishing, will not be permitted.

Passivation shall include the following (as a minimum):

A. The surfaces of all stainless steel products shall be thoroughly degreased and cleaned. Surfaces shall be free of foreign material contamination (ie. markers, chalk, paint, soil, grease, or oil). Cleaning solvents shall be non-chlorinated. Water-break testing per ASTM A 380 shall be performed after cleaning to ensure all foreign material is removed prior to passivation. No break shall be permitted in the film as it drains from the vertical surface.

B. Upon successful completion of the cleaning process, all stainless steel products shall be glass-bead blasted with clean glass that contains no ferrous materials. All surfaces shall be uniformly blasted and shall be free of rust, free iron, weld scale, heat tint oxides, arc strikes, tool marks, gouges, and scratches that occurred in the procurement or fabrication stage. The finish of all stainless steel surfaces shall be of a high quality and as a minimum, equal to the milled or hot rolled condition specified by the material specification.

C. Upon successful completion of the descaling process, all stainless steel products shall be acid passivated for corrosion resistance and to provide a superior surface finish in accordance with ASTM A 967. The passivated parts shall exhibit a chemically clean
surface and shall not show any pitting, etching, or frost. No heat tint or discoloration is allowed.

D. All stainless steel products shall be tested to ensure corrosion resistance prior to shipment to site. As a minimum, the testing shall include a water immersion test and a salt water test. Testing procedures shall follow ASTM A 967 and shall be safe for potable water applications. Prior to shipment, a letter of certification from the fabricator shall be provided to the District indicating the passivation procedures performed, test procedures performed including test results, and statements of certification that all work was performed in accordance with ASTM A 380, A 967, and as specified herein.

The Contractor shall passivate, or have vendors pickle and passivate, all fabricated stainless steel parts including pipe sections, straight spools, fittings, piping components, pipe supports, nuts, bolts, washers, cover plates, equipment and equipment parts and sub components. Stainless steel electrical panels and enclosures manufactured by regular commodity enclosure manufacturers are exempt from the submittal requirements, but will be subject to inspection upon delivery as described below.

Contractor shall submit the passivation method for each fabricated stainless steel component to the District for approval prior to passivation.

Finish requirement: Remove free iron, heat tint oxides, weld scale, and other impurities, and obtain a passive finished surface.

The District shall have the right to inspect stainless steel parts upon delivery for proper finish. The District reserves the right to reject deliveries of stainless steel parts with visible signs of improper passivation at the Contractor's expense. The standard for rejection of stainless steel parts will be the presence of free iron, rust, heat tint oxides, and/or weld scale that is visible. The Contractor shall protect stainless steel parts during delivery to minimize the occurrence of nicks and burs. Free iron and or rust in nicks and burs caused by improper protection during delivery shall also be a reason for rejection and replacement at the Contractor’s expense.

PART 3 - EXECUTION

3.01 GENERAL

A. Installation of all equipment and appurtenances shall conform to the requirements of the manufacturer's specifications and installation instructions. When code requirements apply to installation of materials and equipment, the more stringent requirements, code, or manufacturer's specifications and installation instructions shall govern the work.
B. Contractor shall verify all dimensions and conditions at the site and cross check details and dimensions shown on the Structural Drawings with related requirements on the Civil, Mechanical, and Electrical Drawings and Equipment Shop Drawings. Floor and wall openings, sleeves, variations in the structural slab elevations and other civil, mechanical, or electrical requirements must be coordinated before the contractor proceeds with construction.

C. The precise dimensions and locations of all openings shall be determined from structural, civil, mechanical, electrical, or similar requirements for the actual equipment being furnished. Shop Drawings with adequate accurate dimensions must be submitted and reviewed prior to contractor constructing facilities including concrete, wall, connecting piping or electrical that are affected by said equipment.

D. The contractor is advised that the work on this project may involve working in a confined air space. Contractor shall be responsible for "Confined Air Space" Article 108, Title 8, California Administrative Code.

E. Contractor shall be responsible for maintaining project site security. Project site shall remain secured by temporary chain link fence at all times.

F. Contractor shall clean inside of all new pipelines by flushing after successful passing of pressure testing.

3.02 COORDINATION
The Construction Drawings show in a diagrammatic form the arrangements desired for the principal equipment, piping, and similar appurtenances, and shall be followed as closely as possible. Proper judgment must be exercised in carrying out the work to secure the best possible headroom and space conditions throughout, to secure neat arrangement of piping, valves, fixtures, hangers, and similar appurtenances, and to overcome local difficulties and interferences of structural conditions wherever encountered.

The Contractor shall take all measurements for his work at the installation sites, verify all subcontractor drawings and be responsible for the proper installation, within the available space for the equipment and material specified and shown on the Construction Drawings, and must secure the approval of the District for any variations before making any changes.

3.03 INSPECTION
Inspect each item of equipment for damage, defects, completeness, and correct operation before installing. Inspect previously installed related work and verify that it is ready for installation of the equipment.

3.04 PREPARATION
Prior to installing equipment, ensure that installation areas are clean and that concrete or masonry operations are completed. Maintain the areas in a broom-clean condition during installation
operations. Clean, condition, and service equipment in accordance with the reviewed Instruction Manuals and requirements in other Sections of these Specifications before installing.

3.05 WORKMANSHIP

A. Preparation, handling, and installation shall be in accordance with manufacturer's written instructions and technical data particular to the product specified and/or approved, except as otherwise specified.

B. Work shall be furnished and placed in coordination and cooperation with other trades.

C. Electrical work shall conform to the National Electrical Contractor's Association Standard of Installation for general installation practice.

3.06 GRADING AND SITE WORK

Unless specified otherwise on the Construction Drawings, all grading and site work shall be per District Detailed Provisions, Sections 02201 and 02513 and as specified hereinafter.

A. Site grading shall be performed in accordance with contract documents, soils report, and grading code of Riverside County, including any special requirements of the grading permit. An approved copy of the grading permit and site/grading plan shall be on site while work is in progress.

B. Excavated soils may be utilized for selected fill material provided these materials are free of vegetative matter and other deleterious substances and shall not contain rocks or irreducible materials with a maximum dimension greater than 8". The final surfaces shall be wheel rolled to a smooth, well compacted surface at both subgrade and at finished grade.

C. Selected backfill material around proposed wet well shall be placed in layers which, when compacted, shall not exceed 8" in thickness. Each layer shall be spread, moistened, and compacted uniformly to insure all backfill is properly compacted. After each layer of backfill has been placed, mixed, and spread evenly, it shall be thoroughly compacted to a minimum relative compaction of 95 percent.

3.07 EQUIPMENT INSTALLATION

A. Structural Fabrications

Conform to the AISC Code and Specification references in Article "Structural Steel Fabrications."
B. Equipment

Conform to reviewed Instruction Manuals. Employ skilled craftsmen experienced in installation of the types of equipment specified. Use specialized tools and equipment, such as precision machinist levels, dial indicators, gauges, and micrometers, as applicable. Produce acceptable installations free of vibration or other defects.

C. Anchor Bolts

Deliver bolts with templates or setting drawings and verify that bolts are correctly located before structural concrete is placed.

D. Base and Bedplate Grouting

Do not place grout until initial fitting and alignment of connected piping is completed. Level and align equipment on the concrete foundations, then entirely fill the space under base or bedplates with grout. Grout shall be non-metallic non-shrink type. Bevel exposed grout at 45 degree angle, except round exposed grout at horizontal surfaces for drainage. Trowel or point exposed grout to a smooth dense finish and damp cure with burlap for three days. When grout is fully hardened, remove jacking screws and tighten nuts on anchor bolts. Check the installation for alignment and level, and perform approved corrective work as required to conform to the tolerances given in the applicable Instruction Manual.

3.08 CONDUIT INSTALLATION

A. General

1. Contractor shall install conduit and electrical equipment in locations that will cause minimal interference with the maintenance and removal of mechanical equipment. Conduits and connections are shown schematically on the Drawings. Contractor shall run conduit in a neat manner parallel or perpendicular to walls and slabs, and wherever possible, installed together in parallel runs supported with Unistrut type support system. All conduits shall be installed straight and true with reference to the adjacent work.

2. Locations of conduit runs shall be planned in advance of the installation and coordinated with the mechanical work in the same areas, and shall not unnecessarily cross other conduits or pipe, nor prevent removal of nor block access to mechanical or electrical equipment.

3. Unless noted otherwise on the Drawings, buried conduit shall be installed with a minimum of 30" cover. Buried conduit shall be encased in red colored concrete and mechanical consolidation of concrete shall be used per District Detailed
Provisions, Section 03300. Conduit trench backfill shall be compacted to a minimum of 90 percent relative compaction.

Buried conduit shall be installed using approved spacers and cradles, properly supported/anchored and at sufficient intervals to prevent movement during encasement operations (maximum spacing of five feet). Where change in direction is required, long radius PVC-coated Rigid Galvanized Steel elbows shall be installed for GF, PF, and MSF conduits. Prior to installation of conductors in underground conduits, a testing mandrel not less than six (6) inches long and with a diameter 1/4 inch less than the conduit diameter shall be drawn through after which a stiff bristle brush of the proper size for the conduits shall be drawn through until the conduits are free of all sand and gravel. Test shall be accomplished prior to placing concrete.

4. Unless noted otherwise on the Drawings, conduit cast in concrete, under concrete slabs or footings, or through concrete walls, slabs, or masonry walls shall be PVC-coated Rigid Galvanized Steel. Unless noted otherwise on the Drawings, conduits shall be installed beneath concrete slabs, footings, or trenches, and shall be provided with a minimum of 6" clearance between conduit and bottom of concrete. Conduit backfill where installed beneath concrete shall be two (2) sack cement/sand slurry. Conduits shall be cast in concrete only where specifically shown on the Drawings.

5. Unless noted otherwise on the Drawings, buried conduit shall be PVC Schedule 40 Rigid Non-Metallic. Transition from PVC to PVC-coated Rigid Galvanized Steel shall be made at the horizontal leg of the buried conduit bend.

6. Unless noted otherwise on the Drawings, exposed or above grade conduit shall be PVC-coated Rigid Galvanized Steel.

7. Spare conduits shall be flush with the top of concrete slab or wall, and be provided with threaded cap and polyethylene pull rope with 100-pound (minimum) tensile strength.

8. All conduits shall be tightly sealed during construction by use of conduit plugs or "pennies" set under bushings. All conduit in which moisture or any foreign matter has collected before pulling conductors shall be cleaned and dried to the satisfaction of the District.

9. Conduits shall be securely fastened to cabinets, boxes, and gutters using locknuts (one inside and one outside enclosure) and an insulating bushing or specified insulated connectors. Grounding bushings or bonding jumpers shall be installed on all conduits terminating at concentric knockouts.
10. Where conduit is stubbed up through concrete slabs or footings into MCC/electrical panels, provide a minimum of 1-1/2" clearance between rebar and conduit and a minimum of 1" clearance between conduits. Adjust rebar spacing as necessary to a maximum of 1/2 the nominal spacing such that maximum rebar spacing does not exceed 1-1/2 times that specified. The total amount of reinforcing steel shall not be reduced.

11. Conduits shall terminate within the respective MCC/panel section, or in adjacent section if additional space is required. Contractor shall adjust location of conduit terminations based on the approved MCC/panel layout.

12. Underground pull boxes shall be sized and located as shown on the Drawings. Additional pull boxes shall be provided as necessary for conductor pulling (total bends between pull boxes shall not exceed 360°). Pull box sizes shown are minimum sizes. Depending upon the Contractor's duct bank configuration and pull box knockout area, larger size pull boxes may be necessary. Cost of additional or larger pull boxes shall be borne by Contractor. Pull boxes shall be precast concrete with required knockouts and concrete sump (broken out). Pull boxes shall be set on a minimum of 12" thick of 3/4" crushed rock. Unless noted otherwise, pull boxes shall be provided with one-piece, HDG steel, bolt down-type traffic covers with lifting holes. Pull boxes and covers shall be as manufactured by Jensen, or equal.

13. Contractor shall furnish and install conduit and conductors as shown on the Drawings, as shown on the control diagrams, and as listed on the "Schedule of Conduit and Conductors" drawing. Contractor is advised that not all conduit and conductors are listed in the schedule (particularly 120V lighting and receptacles) and that not all conduit and conductors listed in the schedule are specifically shown, labeled, or called out individually on other drawings.

B. Identification

Each and every conduit shall be provided with a 14-gauge brass labeling tag, 1-1/2 inch diameter, bearing 3/16 inch high die-stamped lettering with conduit designation shown on the Drawings. Each end of a conduit shall be provided with an identification tag. Each tag shall be securely attached to its conduit with a #10 single-jack brass chain or with brass fasteners. Each tag shall be provided with a hole for securing tag with chain or fasteners.

C. Rigid Non-Metallic Conduit

Unless noted otherwise on the Drawings, PVC conduit shall be used underground. PVC conduits shall not be run exposed. Risers to exposed or above grade locations shall be PVC-coated Rigid Galvanized Steel.
D. **PVC-Coated Rigid Galvanized Steel Conduit**

Threadless couplings will not be acceptable. Where necessary for connecting conduit, UL listed PVC-coated couplings shall be used. All ends and joints shall be reamed smooth after cutting.

E. **Supports**

Exposed conduit shall be supported with channel supports spaced per NEC requirements (8'-0" maximum spacing) and within 18" of couplings, bends, boxes, etc., unless otherwise shown on the Drawings.

F. **Termination and Joints**

1. Raceways shall be joined using specified couplings or transition couplings where dissimilar raceway systems are joined.

2. Conduit terminations exposed at weatherproof enclosures and cast outlet boxes shall be made watertight using approved connectors and hubs.

3. Conduit bodies (condulets) are not acceptable as enclosures for splices.

4. At all conduit terminations and boxes, conductors shall be protected by a fitting equipped with a plastic bushing having a smoothly rounded insulating surface.

3.09 **CONDUCTOR AND CABLE INSTALLATION**

A. **General**

1. Conductors shall not be installed in conduit runs until all work is completed for each individual conduit run. Care shall be taken in pulling conductors such that insulation is not damaged. UL approved pulling compounds shall be used.

2. Unless noted otherwise on the Drawings, all conductors or cables shall be installed in conduit or electrical enclosures.

3. All cables shall be installed and tested in accordance with manufacturer's requirements and warranty.

4. All field wiring to control panel(s), VFD(s), and to sections of the MCC shall terminate at terminal strips in the respective panels and buckets.
5. Contractor is advised that interconnecting wiring within and between lineups (assembled panels with common interconnecting horizontal wireways) of MCCs, distribution panels, MCPs, and control panels is not specifically listed or shown on the Drawings. Contractor is directed to control diagrams and RTU connection diagrams on the Drawings for these connections, which are subject to change according to approved shop drawings. Contractor shall install wiring for said connections within the bottom wireway of MCCs and panels.

6. No splices unless approved by District.

B. Identification

1. All branch-circuits shall be securely tagged, noting the purpose of each.

2. All conductors shall be numbered and labeled with vinyl wrap-around markers. Where more than two conductors run through a single outlet, each conductor shall be marked with the corresponding circuit number at the panelboard.

3. Conductors size #6 AWG and larger shall be color coded using specified phase color markers and identification tags.

4. All terminal strips shall have each individual terminal identified with specified vinyl markers.

5. Inside of all junction box cover plates shall be identified via felt-tip pen or decal label, denoting the panel and circuit numbers and voltage contained in the box.

6. All receptacles and switches shall be decal labeled on the plate, denoting the panel and circuit number.

C. Connections to Circuit Breakers, Switches, and Terminal Strips; Stranded Copper Conductors

1. #12 through 8 AWG: Conductor shall be terminated in locking tongue style, pressure type, compression lugs, unless clamp type connection for stranded conductor is provided with device.

2. #6 AWG and larger: Conductor shall be terminated in one-hole flat-tongue style, compression type lugs, or by connectors supplied by the manufacturer.

D. Grounding

Enclosures of equipment, raceways, and fixtures shall be permanently and effectively grounded. A code-sized, copper, insulated green equipment ground shall be provided
for all branch circuit and feeder runs. Equipment ground shall originate at panelboard ground bus and shall be bonded to all switch and receptacle boxes and electrical equipment enclosures. Ground terminals on receptacles shall be connected to the equipment grounding conductor by an insulated copper conductor.

E. Status, Alarm, and Control Signal (IO)

Status, alarm, and control signal (IO) conductors to and from the RTU terminal strips shall be identified at both ends using the District's labeling designation shown on Drawing E-4, "RTU Status/Alarm Signal Wiring Diagram" (i.e. 4-6, 5-2, etc.).

F. Ultrasonic Level Control System

Interconnecting cable between transducer and controller shall be supplied with unit, and shall be suitable for a maximum system length of 300'. Contractor shall verify length of cable required for each specific installation. Cable shall be installed in a single run with no splices. Cable shall be installed in continuously grounded rigid Schedule 40 HDG, PVC-coated conduit. Conduit shall be installed a minimum of 8' from 480V conduits.

3.10 ELECTRICAL SERVICE INSTALLATION
Contractor shall construct power service facilities in accordance with SCE requirements. Contractor shall furnish and install transformer slab, conduits, and grounding facilities. Contractor shall coordinate all work with SCE and verify slab and conduit locations with SCE prior to installation. All service equipment and panels shall be in strict accordance with SCE requirements.

3.11 ELECTRICAL SHORT CIRCUIT COORDINATION AND ARC FLASH
In accordance with District Detailed Provisions, Section 16040, Contractor shall field verify adjustment of all trip setting with the approved Coordination Study and shall provide arc flash and shock hazard warning labels.

3.12 CONCRETE CONSTRUCTION
All concrete construction shall be in accordance with District Specification Sections 03150, 03200, and 03300 and as specified hereinafter.

A. Formwork, Curing, and Backfill

1. Foundations

Cure per specifications. Wet well foundation shall cure a minimum of 7 days and achieve a minimum compressive strength of 2,500 psi prior to setting wet well RCP. Test cylinders shall be cured in field.
2. **Suspended Slabs**

 Cure per specifications. Forms shall remain in place until a minimum of 14 days and 100 percent of design strength are reached. Test cylinders shall be cured in field.

B. Delineate Raised Concrete Slabs

 Provide a 6" wide yellow paint stripe along the edge of all concrete surfaces that are higher than the surrounding finished surface to delineate changes in elevation.

3.13 PIPE INSTALLATION

A. Unless shown otherwise on the Drawings, minimum cover on below grade pipe shall be 30 inches.

B. Where groundwater is encountered, all VCP pipe shall be treated for absorption resistance per District's Specifications.

C. All pipe zone bedding and trench backfill shall be per Standard Drawings SB-157, SB-158, and SB-159.

D. Pipe shall be installed in trench condition and as shown on District Standard Drawings. Backfill shall be completed including compaction tests prior to pressure testing. Backfill in pipe zone shall be compacted to minimum 90 percent compaction. Where pipe is located under slabs, all trench backfill shall be minimum 95 percent compaction.

E. Unless shown otherwise on the Drawings, piping where stubbed through slabs/foundations shall be wrapped with building paper or Protecto Wrap tape.

3.14 PIPE TESTING

All piping shall be hydrostatically tested per District Standards. Unless specified otherwise, piping shall be tested under a pressure 1-1/2 times the design operating pressure of the pipe. Testing against valves is not permitted. Contractor shall provide temporary bulkheads, skillets, and appurtenances as required for testing. All piping under concrete slabs/foundations shall pass pressure testing prior to placing concrete. No visible leakage is permitted in exposed piping.

3.15 FIELD TESTING AND COMMISSIONING OF EQUIPMENT

Prior to District's acceptance, calibration and testing, pre-start-up, start-up, and 7-day live test shall be performed in accordance with these Specifications.

The Contractor shall furnish all labor, equipment, and material necessary to perform field testing and commissioning of equipment, including all related appurtenances. All costs for performing calibration and testing, pre-start-up, start-up, and 7-day live test shall be included in the Contract Price, and no extra
payment will be made to the Contractor due to overtime, weekend, or holiday labor costs required to perform and complete same. Requirements specified in this Article are in addition to the demonstration and test requirements specified under other Sections of these Specifications.

A. Pre-start-up, start-up, and 7-day live test shall be performed by the Contractor in accordance with the approved procedure plans to demonstrate to District's satisfaction that:

1. All components of the process systems defined herein and the entire lift station system are fully completed and operable.

2. All units, components, systems, and the entire lift station system operate with the efficiency, repeatability, and accuracy indicated and specified.

3. All components, systems, and the entire lift station conform to the Contract Documents and the reviewed shop drawings, samples, construction manuals, materials lists, and other reviewed submittals.

B. Prerequisite Conditions

Calibration and testing shall not commence for any equipment item or system until all related structures, piping, electrical, instrumentation, control, and like work has been installed and connected in compliance with the pertaining requirements specified elsewhere in the Specifications.

Pre-start-up, start-up, and 7-day live test shall not commence for any equipment item or system until calibration and testing has been completed as specified herein.

C. Demonstration and Testing Materials

Furnish materials, diesel fuel, and electrical power for all tests. Use potable water or reclaimed water to fill the lift station wet well. Furnish temporary facilities as required such as by-pass or re-circulation piping, diversions, storage, and similar facilities. Use procedures that conserve testing materials and avoid wastage, especially with respect to large quantities of fresh water and electrical power.

D. Inspection and Supervision by Manufacturers

Perform pre-start-up and start-up under continuous inspection by District. Technical representatives of the various equipment manufacturers shall be present for the pre-start-up and the start-up, shall examine their equipment at least twice, and shall supervise the start-up and adjustment procedures.
E. **Correction of Defects**

Immediately correct all defects and malfunctions disclosed by pre-start-up, start-up, and 7-day live test using approved methods and new materials for repairs as required. Upon District's recommendation, interruption time necessary for corrective work may be added to the specified total 7-day live test period.

F. **Acceptance**

Satisfactory completion and approval of required operational 7-day live test is one of the conditions precedent to District's acceptance of the work and does not constitute final acceptance.

Upon District's approval of required 7-day live test, Contractor shall check all equipment and confirm proper fluid levels.

G. **Manufacturer's Supervision and Installation Check**

Each equipment manufacturer shall furnish the services of an authorized representative specially trained and experienced in the installation of his equipment during pre-start-up and start-up to: (1) be present when the equipment is first put into operation, (2) inspect, check, adjust as necessary, and approve the installation, (3) repeat the inspection, checking, and adjusting until all trouble or defects are corrected and the equipment installation and operation are acceptable, (4) witness and supervise field testing and commissioning of equipment to the extent specified, and (5) prepare and submit to the District, upon successful completion of pre-start-up testing, the specified Manufacturer's Certificate of Proper Installation (see attached Exhibit A) confirming that all pumping units and emergency standby power generator set have been installed, inspected, checked, adjusted, and tested in accordance with the manufacturer's recommendations and requirements specified herein.

H. **Calibration and Testing**

Upon installation of all lift station facilities, Contractor shall perform calibration and testing. At a minimum, calibration and testing shall include the following for all facilities:

1. Meggering all motors and their conductors.

2. Meggering all conductors for 3-phase power.

3. Visually inspecting field wiring against approved shop drawings.
4. Checking for abnormalities that may have occurred during shipping or installation of all equipment and components including loose wiring, physical damage, or insecure mounting of components.

5. Complete all testing and labeling per Section 16040 prior to energizing any electrical panels or equipment.

6. Energizing all panels (only after testing per Section 16040).

7. Simulate all controls and equipment start, stop, and shutdown, including checking discrete signals locally at the panel and by jumpering remote devices at the field end to simulate signals (prior to actually operating equipment).

8. Testing all interlock and maintenance switches.

9. Checking analog signals by utilizing loop calibrator as required.

10. Calibrating all control instrumentation and monitoring equipment (flow, level, pressure, etc.).

11. Calibrating panel devices as required including timers and controllers.

I. Pre-Start-Up

1. General

Upon successful completion of calibration and testing, Contractor shall schedule the pre-start-up. A minimum of fourteen (14) days notice shall be provided to District prior to the pre-start-up. The pre-start-up shall be performed on one (1) day and Contractor's representative(s), District's Operations representative(s), Inspector, and Manufacturer's representative(s) shall attend the pre-start-up. The pumps shall be tested through the force main. Contractor shall provide water for filling the wet-well, operate the pumps, and assure that the discharge piping and force main is completely filled prior to pre-start-up. All equipment shall be operated for a period of 30 minutes unless otherwise specified. All controls and alarm conditions shall be simulated. If the equipment does not perform in conformity with Contract Documents requirements, the Contractor will be required to remove, replace, and restore the equipment to full compliance with the Contract Documents at his expense.
As a minimum, during pre-start-up the Contractor shall demonstrate a complete and operational lift station as follows:

a) Response of equipment to appropriate manual or automatic controls, or combinations of both automatic and manual controls, shall be demonstrated to be correct and accurate. Where applicable, all components shall be tested for both manual and automatic operation. Where a component performs more than one function, every function shall be validated.

 (i) Pumping equipment shall respond accurately and reliably to liquid level from the wet well. Automatic alternation and back-up pump functions shall also be validated.

 (ii) Auxiliary equipment items such as alarm signals to remote telemetry, and like items shall respond accurately and reliably to every condition for which they are programmed, in the manner specified.

b) Functionality of all alarm and status lights.

c) Demonstrating uninterruptable power supply.

d) Demonstrating all control and monitoring features of all main control panels, local control panels, and PLCs in conjunction with associated equipment.

e) Measuring and recording voltage and amperage draw readings for all equipment motors under loaded conditions.

f) Testing all components of RTUs, including control systems.

g) Operating all equipment under all conditions and demonstrate all alarms, shutdowns, and operating modes.

h) Performance testing of each Pumping Unit through the discharge piping

i) Operation of Emergency Standby Power Generator Set.

Contractor shall refer to various Technical Specifications herein for additional specific equipment testing requirements.
2. Pumping Units

Pre-start-up testing for pumping units shall be performed utilizing potable or reclaimed water. The wet well shall be filled to pump operating level and discharge from the pumps shall be through the force main. Pump discharge valves shall be throttled to simulate the design operating condition. Contractor shall provide all required testing equipment to perform pumping unit start-up at no additional cost to the District.

Contractor shall provide all instrumentation to confirm pumping unit and electric motor performance, including calibrated test gauges for monitoring discharge pressure, and electrical monitoring equipment to measure current, voltage, power, kVA, and power factor.

Contractor shall record pumping unit flow, discharge pressure, motor voltage, and motor amperage, hourly throughout the test period.

The pumping units shall operate as specified without excessive noise, surging, cavitation, vortexing, vibration, or clogging, and without overheating of the bearings. Each pumping unit shall operate a minimum of 30 minutes.

All automatic and manual controls shall function in accordance with the specified requirements.

The Contractor shall perform the following tasks under the supervision of the pump manufacturer:

a) Completed pumping unit (pump and motor) shall receive a final field trim balance, as may be required, and vibration shall be checked and recorded. The vibration of all pumps shall be equal or less than the amplitude limits recommended in the Hydraulic Institute Standards and it shall be recorded at a minimum of four pumping conditions defined by the Engineer. All measurements shall be witnessed by the District. Vibration shall be measured at motor thrust bearing housing and at any other locations on pumping unit as directed by the District. Vibration shall be measured over the full range of the pump operating speed.

b) Each pump's performance shall be documented by obtaining concurrent readings showing motor voltage and amperage, pump flow rate, pump suction head, and pump discharge head. Readings shall be documented at a minimum of three pumping conditions, including the specified design point, to ascertain the actual pumping curves. Another test shall be run at shut-off head. Each power lead to the motor shall be checked for proper current balance.
c) Pumping units (pump and motor) shall perform substantially in conformance with the certified pump curves and the factory performance test results as adjusted for field conditions. Additionally, discharge from pump shall not exceed the design flow rate by more than 20%. If, in the opinion of the District, the equipment furnished does not perform in accordance with these Specifications, Contractor shall promptly make all necessary repairs or corrections so that the equipment fully complies with these Specifications. Contractor shall remove, restore, and replace the equipment if required at his expense. Factory performance tests, pre-start-up, and start-up testing shall be rerun if necessary at Contractor's expense.

3. Emergency Standby Power Generator Set

A pre-start-up test shall be conducted on the generator set for the lift station. Contractor shall be responsible for the proper conduct of the tests and to furnish all equipment, labor, and material required to perform the tests.

As a minimum, pre-start-up testing shall consist of the following:

a) Perform engine manufacturer's recommended pre-starting checks.

b) Interrupt normal electrical service from power utility and verify automatic starting of generator set and transfer switch operation from "normal" to "emergency". Adjust ATS time delays for generator set starting and transfer per manufacturer's recommendations and District preferences.

c) Operate lift station pumping equipment and control system under standby generator power for 30 minutes (minimum). During this period, checks shall be made of generator set operating parameters (e.g. engine oil pressure, jacket water temperature, RPM, voltage, amperage, and frequency) to verify generator set is operating properly.

d) Automatic shutdown of generator set shall be verified by simulating an engine alarm condition. Contractor shall also verify that the alarm signal is transmitted to the RTU and the ATS re-transfers to utility power.

e) If the engine generator set, ATS, control system, and accessories do not operate in a satisfactory manner, the trouble shall be located, promptly repaired by the Contractor, and retested at Contractor's expense.

f) If equipped with a DPF, DPF alarms shall be tested and verified.
Submersible Lift Station with Standby Power
Section 11200 – 70

g) Equipment operating hours shall be recorded on a daily basis during all testing.

h) If the site is located 500 feet or less from a school, Contractor shall comply with the following applicable limits or in accordance with the latest revision of SCAQMD Rule 1470, whichever is more stringent:

(i) If the genset is on school grounds, it shall not be operated whenever there is a school sponsored activity.

(ii) If the genset is located 328 feet or less from a school, it shall not be operated between the hours of 7:30 a.m. and 4:30 p.m. on days when school is in session. If a DPF is installed, the genset shall not be operated between the hours of 7:30 a.m. and 3:30 p.m.

(iii) If the genset is located more than 328 feet and less than or equal to 500 feet from a school, it shall not be operated between the hours of 7:30 a.m. and 3:30 p.m. on days when school is in session. A genset that emits particulate matter (PM) at a rate of 0.01 g/bhp-hr or less is not subject to this restriction.

J. Start-Up

Upon successful completion of pre-start-up and after receipt of all Manufacturer's Certificate of Proper Installation by the District, Contractor shall schedule the start-up. A minimum of three (3) days notice shall be provided to District prior to the start-up. The Contractor's representative(s), District's Operations representative(s), Engineering Consultant, Inspector, Design Engineer, and Manufacturer's representative(s) shall attend start-up.

All testing described for pre-start-up shall be repeated during start-up and the pumps shall be tested through the force main(s). Contractor shall provide water for filling the force main, operate the pumps, and assure that the force main(s) are completely filled prior to start-up.

K. 7-day Live Test

After successful completion of start-up, the Contractor shall participate in a live test of the lift station that shall encompass a 7-day period of trouble free operation. During the 7-day live test of the lift station, the lift station will be operated continuously under normal operating conditions. All alarms shall be transmitted to Contractor and District. The Contractor shall have personnel available within one hour to respond to any problems, and shall diligently pursue repair of the problem. If the District determines the problem to be major, then the District may instruct the Contractor to repeat the 7-
day live test. The District may continue to repeat the test until 7 days of trouble-free operation are recorded.

Contractor shall provide potable water to fill the wet well at a constant rate as required to start the pumps 3 times per day (throughout the entire 7-day period) from the hose bib located at the wet well. All costs for potable water, power, and diesel fuel will be borne by the Contractor during this test period.

Contractor shall operate standby generator for two 4-hour periods (different days) and each pumping unit shall be selected in the "lead" position for a minimum of 24 hours during 7-day live test of the lift station.

Contractor shall maintain, and submit to District at the end of the 7-day live test, a log of all alarms and problems. The log shall include date of alarm or problem, description of alarm or problem, date of corrective action, and corrective action to fix alarm or problem.

3.16 IN-SERVICE CHECKS

As a part of the work, an in-service check of each system required to be validation tested shall be performed twice during the period of the Contractor's guarantee by qualified technical representatives of the various system manufacturers, including manufacturers of equipment and components within systems. Checks shall be detailed and complete, requiring not less than 2 hours at the site, and shall be performed under the observation and to the satisfaction of the District. All costs for in-service checks shall be included in the Contract Price.

A. Notification

The District shall be notified in writing at least 10 days before the performance of each in-service check. The proposed dates for checking shall be changed if required by the District's operations personnel.

B. Consultation

At the time of each in-service check, the manufacturer's technical representatives shall consult with the District to review the Operation and Maintenance Manual and the pertinent operational and maintenance problems encountered, and shall furnish technical advice and recommendations to the District.

C. Schedule

Initial in-service checks shall be performed approximately 6 months after final acceptance of the lift station. The second in-service check shall be performed within 60 days of the end of the Contractor's guarantee period.
D. Reports

A written report of each in-service check signed by the appropriate manufacturer or his representative shall be delivered to the District within 10 days following the check. The report shall describe the checking procedure in detail, and shall state all advice and recommendations.

3.17 INSTRUCTION

After all equipment has been installed, tested, and adjusted, and placed in satisfactory operating condition, each equipment manufacturer shall provide classroom instruction to District's operating personnel in the use and maintenance of the equipment. Two (2) hours of instruction shall be provided unless otherwise specified. Contractor shall give the District formal written notice of the proposed instruction period at least two weeks prior to commencement of the instruction period. Scheduled training shall be at a time acceptable to the District and the manufacturer. During this instruction period, the manufacturer shall answer any questions from the operating personnel. The manufacturer's obligation shall be considered ended when he and the District agree that no further instruction is needed.

3.18 CLEANING

Upon successful completion of start-up and testing, Contractor shall thoroughly clean all equipment and piping. Contractor shall remove all traces of dirt, oil, grease, etc. Contractor shall clean all exposed parts of electrical installations including electrical panel and junction box interiors.

END OF SECTION 11200
MANUFACTURER’S CERTIFICATE OF PROPER INSTALLATION

<table>
<thead>
<tr>
<th>OWNER:</th>
<th>EQPT SERIAL NO:</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQPT TAG NO:</td>
<td>EQPT/SYSTEM:</td>
</tr>
<tr>
<td>PROJECT NO:</td>
<td>SPEC. SECTION:</td>
</tr>
</tbody>
</table>

I hereby certify that the above-referenced equipment/system has been:

(Check Applicable)

- [] Installed in accordance with Manufacturer's recommendations.
- [] Inspected, checked, and adjusted.
- [] Serviced with proper initial lubricants.
- [] Electrical and mechanical connections meet quality and safety standards.
- [] All applicable safety equipment has been properly installed.
- [] System has been performance tested, and meets or exceeds specified performance requirements. (When complete system of one manufacturer)

Comments: __
__
__

I, the undersigned Manufacturer's Representative, hereby certify that I am (i) a duly authorized representative of the manufacturer, (ii) empowered by the manufacturer to inspect, approve, and operate his equipment and (iii) authorized to make recommendations required to assure that the equipment furnished by the manufacturer is complete and operational, except as may be otherwise indicated herein. I further certify that all information contained herein is true and accurate.

Date: __________________________

Manufacturer: _________________________

By Manufacturer’s Authorized Representative: _________________________

(Authorized Signature)

491-53
TABLE 1

RELATED DISTRICT STANDARD DRAWINGS

Refer to the latest Standard Drawings located at the following web site

(http://www.emwd.org/index.aspx?page=166)

<table>
<thead>
<tr>
<th>Standard Dwg. No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-286B</td>
<td>Trench Backfill (for PVC forcemain)</td>
</tr>
<tr>
<td>B-590</td>
<td>5/8" Meter Service Connection, 1" Copper Tubing</td>
</tr>
<tr>
<td>B-590A</td>
<td>5/8" Service Connection, 1" Copper Tubing</td>
</tr>
<tr>
<td>B-591</td>
<td>1" Meter Service Connection, 1" Copper Tubing</td>
</tr>
<tr>
<td>B-591A</td>
<td>1" Service connection, 1" Copper Tubing</td>
</tr>
<tr>
<td>B-597</td>
<td>Backflow Prevention Assembly Installation Diagram</td>
</tr>
<tr>
<td>B-656</td>
<td>Location Wire Installation</td>
</tr>
<tr>
<td>B-663</td>
<td>Standard Restraint (Tee, Dead End, Bend)</td>
</tr>
<tr>
<td>B-665</td>
<td>Guard & Marker Posts</td>
</tr>
<tr>
<td>D-672</td>
<td>Chain Link Fence Details</td>
</tr>
<tr>
<td>SB-08</td>
<td>Locking Type Manhole Cover & Frame</td>
</tr>
<tr>
<td>SB-30</td>
<td>Reinforced Precast Shallow Manhole</td>
</tr>
<tr>
<td>SB-53</td>
<td>Precast Reinforced Concrete, 48" & 60" I.D. Manhole</td>
</tr>
<tr>
<td>SB-56</td>
<td>Precast Non-Reinforced Concrete, 48" I.D. Manhole</td>
</tr>
<tr>
<td>SB-61</td>
<td>Manhole Cover & Frame</td>
</tr>
<tr>
<td>SB-157</td>
<td>Pipe Zone Bedding for Sewer Pipe</td>
</tr>
<tr>
<td>SB-158</td>
<td>Trench Backfill for Sewer Pipe</td>
</tr>
<tr>
<td>SB-159</td>
<td>Classification of Pipe Zone Bedding for Sewer Pipe</td>
</tr>
<tr>
<td>- - -</td>
<td>Sewer Guideline for Manhole Sizing *</td>
</tr>
</tbody>
</table>

*Refer to the latest Guideline Standards located at the following web site:

MAINTENANCE BOND
FOR PUMPING EQUIPMENT
(By Developer)

KNOW ALL MEN BY THESE PRESENTS, that we, __________________________, as Surety, hereinafter called Surety, are held and firmly bound unto Eastern Municipal Water District, hereinafter called District, in the penal sum of $______, for the payment whereof (Developer) and Surety bind themselves, their heirs, executors, administrators, successors, and assigns, jointly and severally, firmly by these present.

WHEREAS, Developer has by written agreement, dated _____ entered into a contract with the District for __________________________ in accordance with the General Conditions, project drawings and specifications which contract is by reference incorporated herein, and make a part hereof, and is referred to as the contract.

NOW, THEREFORE, the condition of the obligation is such that, if Developer shall remedy any defects due to faulty materials or workmanship which shall appear within a period of 2 years from the date the project is accepted as provided for in the contract, then this obligation is to be void, otherwise to remain in full force and effect.

PROVIDED, HOWEVER, that the District shall give Developer and Surety notice of observed defects with reasonable promptness.

Signed and sealed this _____ day of______, 20____

__ (SEAL)
Developer

__ (SEAL)
Surety

Title

Title

C14D-1 00048 Maintenance Bond (by Developer)
SPECIFICATIONS - DETAILED PROVISIONS
Section 11210 - Small Submersible Sewage Lift Station
without Emergency Standby Power Generation

CONTENTS

PART 1 - GENERAL
1.01 GENERAL DESCRIPTION
1.02 REFERENCES
1.03 SYSTEM DESCRIPTION
1.04 SUBMITTALS
1.05 WARRANTY
1.06 MAINTENANCE BOND FOR PUMPING EQUIPMENT

PART 2 - PRODUCTS
2.01 SUBMERSIBLE PUMPING UNITS
2.02 EQUIPMENT ACCESS HATCH
2.03 UTILITY METERING AND MAIN DISCONNECT
2.04 MOTOR CONTROL CENTER
2.05 ELECTRICAL PANEL ENCLOSURES AND HEATING
2.06 CONTROLS AND INSTRUMENTATION
2.07 BASIC CONSTRUCTION MATERIALS AND COMPONENTS
2.08 MANUAL TRANSFER SWITCH
2.09 PRECAST REINFORCED CONCRETE WET WELL
2.10 STAINLESS STEEL PASSIVATION

PART 3 - EXECUTION
3.01 GENERAL
3.02 COORDINATION
3.03 INSPECTION
3.04 PREPARATION
3.05 WORKMANSHIP
3.06 GRADING AND SITE WORK
3.07 EQUIPMENT INSTALLATION
3.08 CONDUIT INSTALLATION
3.09 CONDUCTOR AND CABLE INSTALLATION
3.10 ELECTRICAL SERVICE INSTALLATION
3.11 ELECTRICAL SHORT CIRCUIT COORDINATION AND ARC FLASH
3.12 CONCRETE CONSTRUCTION
3.13 PIPE INSTALLATION
3.14 PIPE TESTING
3.15 FIELD TESTING AND COMMISSIONING OF EQUIPMENT
3.16 IN-SERVICE CHECKS
3.17 INSTRUCTION
3.18 CLEANING
SECTION 11210
SMALL SUBMERSIBLE SEWAGE LIFT STATION
WITHOUT EMERGENCY STANDBY POWER GENERATION

PART 1 - GENERAL

1.01 GENERAL DESCRIPTION
Contractor shall provide all labor, equipment, and materials necessary to construct a raw sewage lift (pump) station in accordance with the Small Sewage Lift Station Guidelines, the Standard Drawings and Specifications, District's Approved Materials List, and Standard Specifications for Developer Projects.

1.02 REFERENCES
Publications listed below form part of this Specification to extent referenced in the text by basic designation only. The latest edition of publication governs unless otherwise noted.

A. ANSI American National Standards Institute
B. AWWA American Water Works Association Standards
C. ASTM American Society for Testing and Materials
D. IEEE Institute of Electrical and Electronics Engineers
E. NEC National Electric Code
F. NEMA National Electrical Manufacturers Association
G. Hydraulic Institute Standard for Centrifugal, Rotary and Reciprocating Pumps
H. SSPWC Standard Specifications for Public Works Construction
I. CBC California Building Code

1.03 SYSTEM DESCRIPTION

A. Design Requirements

Lift station facilities, including materials of construction, pumps, valves and piping, electrical panels and controls, and manual transfer switch shall be in accordance with requirements specified herein and shown on the Construction Drawings.
Principal items of equipment and material shall include two submersible centrifugal sewage pumping units, piping, valves, motor control center, main control panel and ultrasonic level control system, manual transfer switch, and appurtenances.

B. **Performance Criteria**

Pumps shall be designed to handle raw, unscreened, domestic sanitary sewage. Pumps shall be selected to meet the capacity and hydraulic performance requirements described in the Small Sewage Lift Station Guidelines.

C. **Electrical Power Requirements**

Electrical power furnished to the pumping unit motors shall be 3 phase, 60 hertz, 480 volts, maintained within industry standards. Voltage tolerance shall be plus or minus 10 percent.

1.04 **SUBMITTALS**

A. **Product Data and Shop Drawings**

1. Prior to commencing construction, Contractor shall submit 6 copies of submittal data for all proposed material and equipment to the District for review and approval. Submittals shall be provided in accordance with the requirements of the District's General Conditions, Section F-Labor and Construction.

2. As a minimum, submittals shall include product data and shop drawings for the following: submersible pumping units, motor control center, main control panel, ultrasonic level control, manual transfer switch, piping, valves, pipe joint restraints, wet well precast concrete shaft, wet well access hatch, concrete mix design, and electrical materials.

3. Product data shall include catalog cut sheets reflecting characteristics, performance specifications, and selected options for proposed equipment and appurtenances.

4. Product data for submersible pumping units shall include pump performance curves showing the design duty point capacity (GPM), total dynamic head (TDH), net positive suction head required (NPSHr), efficiency, and hydraulic brake horsepower (BHP).

5. Shop drawings shall be provided for all mechanical and electrical equipment items showing layout of equipment and anchor bolt locations, sizes and minimum embedment requirements.
6. Equipment anchorage calculations for the MCC/MCP. Equipment anchorage calculations shall be prepared in accordance with the California Building Code (latest edition) for Category IV essential facilities. Calculations shall be prepared by a registered professional civil or structural engineer in the State of California.

7. Shop drawings shall also include lift station control wiring diagrams and interconnection diagrams for the motor control center, main control panel, submersible pumping units, manual transfer switch, and electrical service switchgear. Wire numbers, terminal numbers, and legend symbols shall be shown.

8. Lift station control wiring diagrams (ladder diagrams) shall be prepared in accordance with District standard format, including sequential rung numbering located on the left side of the diagram and device, relay, or contact rung number cross references located on the right side of the diagram.

B. Electrical Short Circuit/Coordination Study

The Contractor shall submit for acceptance an electrical short circuit/coordination study in accordance with District Detailed Provisions, Section 16040 "Electrical Short Circuit/Coordination Study, Arc Flash Hazard Study, and Field Testing of Electrical System".

C. Arc Flash Hazard Study

Contractor shall submit for acceptance an arc flash hazard study in accordance with District Detailed Provisions, Section 16040 "Electrical Short Circuit/Coordination Study, Arc Flash Hazard Study, and Field Testing of Electrical System", except that the Arc Flash Hazard/Risk Categories of the electrical distribution equipment shall be limited to Level 2 or less.

D. Operations and Maintenance Manuals

1. Operation and Maintenance (O&M) Manuals shall be provided in accordance with the requirements of the District's General Conditions, Section F-Labor and Construction, and Detailed Provision Section 01430. O&M Manuals shall be submitted to the District for review and approval at least 30 days prior to equipment startup. Comprehensive instructions supplied at time of shipment shall enable personnel to properly operate and maintain all equipment supplied.

2. Documentation shall be specific to the lift station constructed and collated in functional sections. Each section shall combine to form a complete system manual covering all aspects of equipment operation and maintenance.
data for any equipment shall be provided by those supplying the equipment. O&M Manuals shall include the following as a minimum:

a) Functional description of major equipment items.

b) Complete instructions for operating and maintaining equipment and components.

c) Calibration and adjustment of equipment for initial start-up or as required for routine maintenance.

d) Support data for commercially available components not produced by the prime equipment manufacturer, but supplied in accordance with the Specifications, shall be supported by literature from the prime manufacturer and incorporated as appendices.

e) As-built electrical schematic diagrams (control, wiring, and interconnections) of the pumping units, electrical panels, and manual transfer switch. Diagrams shall conform to the requirements specified in Section 1.04.A herein.

3. As a minimum, Operations and Maintenance Manuals shall be submitted for the following items:

a) All electrical components.

b) Pumping units.

c) Flowmeter.

1.05 WARRANTY
All pumping equipment shall carry an extended warranty for a two year period from the date of acceptance. All warranties shall be turned into the District prior to project completion.

1.06 MAINTENANCE BOND FOR PUMPING EQUIPMENT
For District administered contracts the Contractor or his Supplier shall provide a maintenance bond (see EMWD Standard form C-14 or C-14.1 Maintenance Bond) from a bonding company acceptable to the District equal to 100 percent of the pumping equipment value (including motors, pumps and pump assemblies) for a two (2) year term starting when the District has accepted the contracted work. Equipment and/or components failing within this period due to deficiency in design, workmanship, or material shall be removed, replaced, and reinstalled at no cost to the District, and said replacement shall be guaranteed for two years continuous service from the date of replacement. The maintenance bond shall be submitted to the District prior to the performance test of the pump(s).

For contracts not administered by the District (e.g. contracts administered by the Developer or Developer's Engineer), the Developer shall provide the Maintenance Bond for Developer (which is the
same as the above referenced maintenance bond except for the wording of the document) to the District. EMWD standard form C14D, Maintenance Bond for Developer, is attached at the end of this Section.

PART 2 - PRODUCTS

2.01 SUBMERSIBLE PUMPING UNITS

A. General

Pumps shall be of the vertical, non-clog, single suction, centrifugal type, rated for continuous duty in a wet-pit environment, and shall be capable of pumping raw, unscreened sewage with fibrous material, and be capable of passing a minimum 3-inch solid (unless otherwise specified) at the specified flow ranges with the specified sump geometry and operating water levels without clogging, surging, cavitation, vibration, subsurface vortexing, or excessive surface vortexing.

All submersible non-clog sewage pumps shall be the product of a single manufacturer. Pumps shall be as manufactured by Wilo-EMU, Fairbanks Nijhuis, Wemco, ESSCO, Flowserve, Xylem-Flygt, or ABS (no substitutes). Proposed pumping units shall comply with these Specifications and performance requirements provided on Construction Drawings.

The pumps shall not overload the motors at any point on the pump performance characteristic curve within the limits of stable pump operation as recommended by the manufacturer. The service factors for the motors shall not be applied when sizing the motors.

To ensure vibration-free operation, all rotative components of each pumping unit shall be statically and dynamically balanced. Excessive vibration shall be sufficient cause for rejection of the equipment.

If the pumping unit does not perform within the requirements specified herein, the pumping unit shall be removed and repaired or replaced at no cost to the District.

B. Materials (Unless Otherwise Specified)

1. **Strength**

 Castings, fabrications, machined parts, and drives shall be rated for continuous duty over the entire operating range. Service factors, where applicable, shall be assumed to be 1.5.
2. Volute Casing

Volute casing shall be of close grained gray cast iron ASTM A48, Class 30 (minimum), and shall be of a single piece, non-concentric design with smooth fluid passages large enough to pass any size solids which can pass through the impeller. Casings shall be accurately machined to fit the mechanical seal and suction cover assemblies. Each volute casing shall be subjected to hydrostatic pressure of not less than 1-1/2 times the maximum shutoff head for two hours without evidence of leakage or seepage. The volute discharge nozzle shall be of the centerline design with an ANSI 125 pound flange and be of the minimum size specified herein.

3. Impellers

Each impeller shall be a non-clog type cast in one piece of gray cast iron, ASTM A48, Class 30 (minimum), and shall be statically and dynamically balanced, with smooth water passage to prevent clogging by stringy or fibrous materials and other matter found in normal sewage applications. Each impeller shall be keyed to the shaft, and the fastening of the impeller to the shaft shall be made by a special locking device. Impeller shall be sealed from the liquid by means of an "O-ring" and covered and secured to the end face of the shaft by a single bolt with locking device to ensure impeller bolt will not back out if pump is operated backwards.

Unless otherwise specified, impellers shall be enclosed single port, recessed vortex type, or grinder type. Grinder type impellers shall be multi-vane, semi-open with replaceable cutting heads.

District will predetermine the specific impeller type(s) to be used for each project.

4. Volute Wear Ring (not applicable to recessed vortex pumps)

The pump suction shall be fitted with a replaceable stainless steel wear ring with a minimum hardness of 350 BNH.

5. Impeller Wear Ring (not applicable to recessed vortex pumps)

Each impeller shall be fitted with a replaceable stainless steel wear ring with a minimum hardness of 300 BNH to provide efficient sealing between the volute and impeller.
6. Discharge Elbows

Each pump shall be provided with a discharge elbow to be permanently installed with discharge piping in the wet well. The discharge elbow shall be made of close grained cast iron ASTM A48, Class 30 (minimum). The pump shall automatically connect to the discharge connection elbow when lowered into place. Pump shall be easily removed for inspection or service with no need for personnel to enter the wet well. Sealing of the pump to the discharge elbow shall be accomplished by a simple linear downward motion of the pump. Connection shall be machined metal-to-metal, quick disconnect at pump volute, with secondary profile type Elastomer seal or O-ring element for leak proof seal when the pump is in operation.

7. Pump Shaft

Pump shaft shall be high strength 416 stainless steel or carbon steel with 416 stainless steel shaft sleeve and of such diameter that it will not deflect more than 0.002-inch with the largest impeller installed while operating at the maximum design speed, as determined by calculations from the manufacturer.

8. Pump Seals

Each pump shall be provided with two independent mechanical shaft seals. The upper seal shall operate in an oil chamber located just below the stator housing. Upper seal shall contain one stationary tungsten carbide or silicon carbide ring and one positively driven rotating carbon ring functioning as an independent secondary barrier between the pumped liquid and the stator housing. The lower shaft seal shall function as the primary barrier between the pumped liquid and the stator housing. Lower seal shall consist of a stationary ring and a positively driven rotating ring both of which shall be silicon carbide. All metal parts, set screws, and springs of both upper and lower seals shall be 316 stainless steel.

Each interface shall be held in contact by its own spring system supplemented by external liquid pressures. The seals shall require neither maintenance nor adjustment, but shall be easily inspected and replaceable.

The shaft sealing system shall be capable of operating submerged to depths of, or pressures equivalent to, a minimum of 45 feet. No seal damage shall result from operating the pumping unit in its liquid environment. The seal system shall not rely upon the pumped media for lubrication.
9. Guide and Removal System

System shall be designed for pump removal and installation to permit routine maintenance and repair of pumps. Pump supplier/manufacturer shall furnish a reliable, operable system and shall provide technical assistance for installation. Contractor shall demonstrate the use of the system for each pump by removing and reinstalling each pump with the wet well dry. After start-up of pumps, Contractor shall again remove and reinstall each pump then operate pumps again to demonstrate proper installation. The removal system shall be suitable for lifting the pumps with a crane utilizing a stainless steel cable that will be attached to the pump motor lifting bail assembly. The complete guide and removal system shall be furnished with the pumps.

The guide and removal system shall consist of a foot mounted discharge elbow, no less than two 316 stainless steel guide rails, upper rail support bracket, and intermediate rail guide brackets for each pump. Each pumping unit shall be provided with an integral sliding guide bracket. All guide and removal system components, except pump discharge elbow and pump sliding guide bracket, shall be constructed of 316 stainless steel, or better. The pump guide and removal system shall be non-sparking.

10. Electric Submersible Motors

Each pump shall be driven by a vertical, submersible, squirrel cage, induction, shell type motor rated 480 volts, 3 phase, 60 hertz, housed in an air-filled, watertight chamber specifically designed for pumping application as specified herein. Maximum motor speed shall be 1,800 rpm. Electric submersible motor shall be explosion-proof and shall be approved by Factory Mutual (FM) or UL as an Explosion-Proof Unit. The complete unit shall conform to the NEC, Articles 500, 501, and 502 requirements as explosion-proof and suitable for use in Class I, Division 1, Groups C and D hazardous locations. Manufacturers shall coordinate pump motor furnished with electrical switchgear and control equipment.

a) Stator. The stator winding and stator leads shall be insulated with moisture resistant Class F insulation which will resist a temperature of 155 degrees C, 40 degrees C ambient plus 115 degrees C rise, and designed for continuous duty, capable of sustaining a minimum of ten (10) starts per hour. The stator shall be dipped and baked three times in Class F varnish and shall be heat-shrink fitted into the stator housing. The use of bolts, pins, or other fastening devices requiring penetration of the stator housing shall be rejected. Motors shall be capable of continuous duty operation over the wet well range shown on the Drawings including being partially submerged and capable of operating for 15 minutes in air at nameplate horsepower, unless specified for continuous operation in air.
Submersible Lift Station without Standby Power
Section 11210 – 9

b) **Sensors.** Thermal sensors shall be used to monitor stator temperatures. The stator shall be equipped with bi-metallic thermal switches embedded in the stator winding. Sensors shall be rated 120 VAC with normally closed contacts which open upon high temperature. Dual (2) moisture sensing probes or one positive displacement float activated reed switch and one hydrosopic sensor shall be provided in the oil chamber located between the outer and inner seal and are used to detect the presence of moisture should the outer seal fail. The moisture protection system shall be designed to detect water in the motor chamber and provide a warning signal prior to water levels reaching the bearing or wound stator assemblies. Sensor alarms will be incorporated into the station controls. Control modules, such as Warrick relays, shall be provided by the pump manufacturer for incorporation into the MCC controls.

c) **Service Factor.** Unless specified otherwise by specific performance requirements the motor shall be sized to be non-overloading when the pump is operated at any point on the pump performance characteristic curve and shall have a minimum service factor of 1.15. Motor service factor shall not be used in satisfying pumping requirement.

d) **Lifting Assembly.** Lifting assembly (lifting eye or lifting bail) shall be provided on the motor housing and shall be of adequate strength to lift the entire pumping unit. Lifting assembly shall be 316 stainless steel, or better. Lifting assembly shall be provided with a 316 stainless steel clevis and lifting cable. The clevis shall be furnished with a locking mechanism for the clevis bolt, such as a cotter pin. Lifting cable shall be manufactured in the USA and shall be tagged with the lifting capacity per ANSI and Cal/OSHA requirements.

e) **Oil Chamber.** Each pump shall be provided with an oil chamber for the shaft sealing system. The oil chamber shall be designed to assure that air remains in the oil chamber to absorb the expansion of the oil due to temperature variations. The drain and inspection plugs, with positive anti-leak seals, shall be easily accessible from the outside.

f) **Bearings.** Each pump shaft shall rotate on minimum of two (2) permanently lubricated bearings. The upper and lower bearings shall be a single row deep groove ball bearing with the upper bearing providing for radial thrust. Pump bearings shall be of the anti-friction type designed to give 40,000 hours minimum life by L-10 calculations at maximum speed and operating load in continuous operation.

g) **Cable.** Each pump shall be furnished with one or more pump power and control cables as necessary for pump operation and protection. Each cable
shall be sheathed in a synthetic jacket suitable for submersible pump application and be designed to prevent moisture from wicking through the cable assembly even if cable jacket has been punctured.

Cable ends shall be protected at all times from moisture. Exposure to moisture shall result in rejection of the cable. The total cable length shall be of sufficient length for direct connection to pump control and electrical power system at junction boxes shown on the Construction Drawings, including an extra 4 feet to be looped around cable supports.

h) Cable Entry. The cable entry assembly shall be provided to protect the motor from water entering the motor housing either through the cables or around the cables, when the unit is submerged and operating. Adequate strain relief provisions shall be provided to eliminate any mechanical loading of the cable entry seal. Each individual conductor wire shall be cast in resin in such a manner that any water leakage in motor through capillary action, because of external cable damage or other causes, shall be avoided.

11. Protective Coating for Exposed Ferrous Metal Surfaces

Protective coating shall be manufacturer's standard epoxy coating for severe duty, unless specified otherwise on the Construction Drawings.

12. Nameplates

Each pump shall have a Type 316 stainless steel plate permanently attached by stainless steel screws or rivets to the pump frame into which the following information shall be impressed, engraved or embossed: manufacturer's name, pump size, serial number, impeller diameter, capacity, head rating, speed, and bearing numbers. Nameplates shall also include information unique to each item of equipment and device to identify its function as described herein. Function nameplates shall be approximately one inch by 3 inches if made separately. Letters of function titles shall be not smaller than 1/4-inch high.

13. External Hardware

All external nuts, bolts, and washers, etc. shall be 316 stainless steel.

14. Pump Spare Parts

Contractor shall furnish spare parts for each pumping unit. Spare parts shall be as specified herein or as recommended by the manufacturer, shall be undamaged and packaged in original containers, and supplied to the District at time of final acceptance of the work.
Contractor shall furnish the following spare parts:

a) Two spare sets of cable entry grommets and O-rings.

b) Two spare sets of mechanical seals.

c) Two spare impellers.

C. Factory Testing

1. Tests shall be performed on the actual assembled unit over the entire operating range on the certified performance curve. Prototype model tests will not be acceptable.

2. All pumps shall be factory-tested in accordance with the above specifications. Certified test results shall be submitted to the District for approval prior to shipment.

3. Pump curves shall reflect data secured during actual test runs and shall be signed by a responsible representative of the pump manufacturer. Test reports and procedures shall conform to applicable requirements of the Hydraulic Institute Standards, except for testing tolerances for the design condition with one pump operating as shown on the pumping unit performance on the Construction Drawings. Testing tolerance for the design condition shall be +5%-0% for the total dynamic head at the discharge capacity. All other pumping unit performance conditions shall be within the limits shown on the Construction Drawings.

D. Installation

The Contractor shall install all pumping equipment in strict accordance with the manufacturer's instructions. Care shall be used in handling to avoid bumping, twisting, dropping, or otherwise damaging the equipment.

All pump manufacturers shall furnish the services of factory-trained personnel as required to examine the installation, supervise start-up of equipment installed, and repair the equipment at no additional expense to the District.

2.02 EQUIPMENT ACCESS HATCH

Furnish and install a single or double leaf equipment access hatch with safety grates and integral cable troughs as shown on the Construction Drawings. The access hatch shall be integrally cast into the concrete wet well roof. The top of the access hatch shall be flush with the top of the concrete roof. The minimum clear hatch opening dimensions shall be as shown on the Construction Drawings. The access hatch shall be pre-assembled from the manufacturer. The manufacturer shall warranty that the
assembled access hatch shall be free of defects in material and workmanship for a period of (5) years from date of project acceptance. The access hatch shall be as manufactured by Flygt, Bilco or equal.

The access hatch covers, frame, cable trough, components, and hardware shall be constructed of 316 stainless steel. Hatch covers shall be 3/16" (minimum) thickness with a diamond pattern. Safety grates shall be provided beneath the hatch covers for fall through protection when the covers are open. The hatch covers and safety grates shall be reinforced to support a minimum live load of 300 psf with a maximum deflection of 1/150th of the span. Each safety grate shall be provided with a permanent hinging system that will lock the grates in the 90 degree position once opened. Safety grate hinges shall be specifically designed for horizontal installation and shall be through bolted to the safety grate with tamperproof stainless steel lock bolts and shall be through bolted to the equipment access hatch frame with stainless steel bolts and locknuts. Safety grate openings shall be 5" by 5" to allow for visual inspection of the wet well while the grating is in place. The hatch frame shall be angle type and shall be provided with full anchor flange around the perimeter.

Each cover leaf shall be provided with a lift handle that remains flush with the cover when not in use. A removable exterior turn/lift handle with slam lock shall be provided to open the top leaf. The latch release shall be protected by a flush, gasketed, removable screw plug. The top leaf shall also be provided with a recessed padlock clip and cover box. Each cover leaf shall be equipped with a hold open arm, which automatically locks the covers in the open position.

2.03 UTILITY METERING AND MAIN DISCONNECT

A. Main Electrical Service

As shown on the Construction Drawings, main electrical service shall consist of a commercial pedestal with pull section, service (metering) section, and main disconnect. The service pedestal shall be rated for a minimum of 200 AMPS on 480 volt, 3 phase power. The service pedestal shall be UL listed with a short circuit current rating of 42 KAIC (minimum). Equipment shall include a separate, barriered-off, utility metering compartment complete with hinged sealable door and padlock hasp as approved by the utility company. Provide Service Entrance Label and provide necessary applicable service entrance features per NEC, local code requirements, and utility company requirements. Main electrical service shall be as manufactured by Milbank Manufacturing Co., Cooper B-Line, no substitutes.

The main electrical service and disconnect enclosure shall be provided in accordance with these provisions and as shown on the Construction Drawings. Unless specified otherwise, the main electrical service enclosure shall be NEMA Type 3R.

B. Main Disconnect

Main disconnect shall be molded case circuit breaker with provisions to lockout the main disconnect switch as shown on the Construction Drawings.
Molded case circuit breakers shall provide circuit overcurrent protection with inverse time and instantaneous tripping characteristics. Circuit breakers shall be operated by a toggle-type handle and shall have a quick-make, quick-break over-center switching mechanism that is mechanically trip-free. Automatic tripping of the breaker shall be clearly indicated by the handle position. Contacts shall be non-welding silver alloy, and arc extinction shall be accomplished by means of DE-ION arc chutes. A push-to-trip button on the front of the circuit breaker shall provide a local manual means to exercise the trip mechanism.

Circuit breakers shall have a minimum symmetrical interrupting capacity matching the MCC where installed or as shown on the Construction Drawings. Circuit breakers shall be provided with adjustable continuous current and thermal-magnetic trip units and inverse time-current characteristics, unless otherwise shown on the Construction Drawings.

C. Arc Flash Limit

Main electrical service shall be designed, manufactured, and supplied such that the Arc Flash Hazard/Risk Categories shall be Level 2 or less within the Arc Flash Protection Boundary.

Circuit breakers used as a main to disconnect utility power shall be provided with microprocessor-based RMS sensing trip units.

The electrical equipment manufacturer shall coordinate with the engineer(s) performing the Short Circuit/Coordination and Arc Flash Hazard Studies per Section 16040 to comply with the Hazard/Risk Category Level 2 or less.

2.04 MOTOR CONTROL CENTER

A. Construction

1. Motor Control Centers (MCCs) shall be provided as shown on the Construction Drawings and specified herein. MCCs shall comply with the requirements of NEMA ICS 2, the NEC, and UL 845. Wiring shall be NEMA Class II, Type B. MCCs shall be as manufactured by General Electric, Eaton/Cutler Hammer, Allen-Bradley, or Schneider Electric/Square D, (no substitutes).

2. Structures shall be totally enclosed deadfront, free-standing assemblies. They shall be 90± inches high and 21± inches deep. Each structure shall be minimum 20± inches wide and wider where shown on the Construction Drawings, or where required to house components shown on the Construction Drawings. Structures shall contain a horizontal wireway at the top, isolated from the horizontal bus and
shall be readily accessible through a hinged cover. Adequate space for conduit and wiring to enter the top or bottom shall be provided without structural interference.

The MCC enclosure shall be provided in accordance with these provisions, Section 2.05 herein, and as shown on the Construction Drawings.

3. A vertical wireway with minimum of 35 square inches of cross sectional area shall be adjacent to each vertical unit and shall be covered by a hinged door. Wireways shall contain steel rod cable supports.

4. All full voltage motor starter units through NEMA Size 5 shall be of the plug-in type. Plug-in provisions shall include a positive guide rail system and stab shrouds to absolutely ensure alignment of stabs with the vertical bus. Plug-in units shall have a tin-plated stab assembly for connection to the vertical bus. No wiring to these stabs shall extend into the bus compartment. Interior of all units shall be painted white for increased visibility. Units shall be equipped with side-mounted, positive latch pull-apart type control terminal blocks rated 600 volts. Knockouts shall be provided for the addition of future terminal blocks. All internal control wire will be 14 gauge minimum.

5. All plug-in units shall be secured by a spring-loaded quarter turn indicating type fastening device located at the top front of the unit. Each unit compartment shall be provided with an individual front door.

6. An operating mechanism shall be mounted on the primary disconnect of each starter unit. It shall be mechanically interlocked with the unit door to prevent access unless the disconnect is in the OFF position. A defeater shall be provided to bypass this interlock. With the door open, an interlock shall be provided to prevent inadvertent closing of the disconnect. A second interlock shall be provided to prevent removal or re-insertion of the unit while in the ON position. Padlocking facilities shall be provided to positively lock the disconnect in the OFF position with from one to three padlocks with the door open or closed. In addition, means shall be provided to padlock the unit in a partially withdrawn position with the stabs free of the vertical bus.

B. **MCC Bus**

1. Each structure shall contain a main horizontal copper tin plated or copper silver plated bus, with minimum ampacity rating of 400 amperes or as shown on the Construction Drawings. The horizontal bus shall be rated at 65 degrees C temperature rise over a 40 degree C ambient temperature in compliance with UL standards. Vertical busses feeding unit compartments shall be copper and shall be securely bolted to the horizontal main bus. All joints shall be front accessible for
ease of maintenance. The vertical bus shall have a minimum rating of 300 amperes for front mounted units.

2. Isolation of the vertical bus compartment from the unit compartment shall be by means of a full height insulating barrier. This barrier shall be a single sheet of glass reinforced polyester with cutouts to allow the unit stabs to engage the vertical bus. Provide snap-in covers for all unused openings.

3. Busses shall be braced for minimum 42,000 amperes RMS symmetrical, unless shown otherwise on the Construction Drawings.

C. **MCC Motor Controllers (Combination Starters)**

Motor controllers shall consist of combination starter units with motor circuit protectors and motor starters with thermal bimetallic overload relays. Motor starter control power (120V) shall be provided from the lighting panel included in the MCC assembly as shown on the Construction Drawings.

Combination starter units shall be as specified herein and shall be full voltage non-reversing, rated minimum 42,000 amperes RMS, symmetrical at 480V, unless shown otherwise on the Construction Drawings. Combination starter units shall conform to the following:

1. **Motor Circuit Protectors** shall be as manufactured by General Electric, Eaton/Cutler Hammer, Allen-Bradley, or Schneider Electric/Square D, (no substitutes).

 The motor circuit protection shall provide adjustable magnetic protection and be provided with pin insert to stop magnetic adjustment at 1300 percent motor nameplate full load current to comply with NEC requirements. All combination starter units shall have a "tripped" position on the unit disconnect and a push-to-test button on the motor circuit protector. Motor circuit protectors shall include transient override feature for motor inrush current.

2. **Motor starters** shall be electrically operated, electrically held, three-pole assemblies with arc extinguishing characteristics and shall have silver-to-silver renewable contacts. They shall accommodate a total of eight N.O. or eight N.C. auxiliary contacts. Overload protection shall consist of thermal bimetallic ambient compensated type overloads. Sizes shall be determined by the Contractor based on characteristics of actual motor furnished.

3. Each starter (unless otherwise shown) shall be equipped with indicating lights, selector switches, elapsed time meter, and auxiliary contacts, as shown on the
Construction Drawings. Number of auxiliary contacts shall be as required for specific motor control. In addition, 2NO and 1NC spare contacts shall be provided.

4. All status and alarm lights shall be push-to-test type, and shall be heavy-duty, oil-tight (NEMA 13).

D. Arc Flash Limit

Motor control centers shall be designed, manufactured, and supplied such that the Arc Flash Hazard/Risk Categories shall be Level 2 or less within the Arc Flash Protection Boundary.

Distribution circuit breakers used to disconnect power from motor control centers and motor control center mains shall be provided with microprocessor-based RMS sensing trip units.

The electrical equipment manufacturer shall coordinate with the engineer(s) performing the Short Circuit/Coordination and Arc Flash Hazard Studies per Section 16040 to comply with the Hazard/Risk Category Level 2 or less.

2.05 ELECTRICAL PANEL ENCLOSURES AND HEATING

A. Enclosures

MCC enclosures shall be as specified on the Construction Drawings and shall be suitable for the proposed location. Unless noted otherwise on the Construction Drawings, the specified electrical equipment and switchgear shall be housed in NEMA 1 gasketed enclosures with NEMA 3R wrappers. Enclosures shall have NEMA 3R wrap roofs sloping downward towards the rear. Outer sections shall be the same widths as indoor structures, except each end of the outdoor assembly shall have an end trim. The enclosures shall be provided with bolt on rear covers for each section.

Enclosures shall be provided with ANSI 61 gray baked enamel exterior, and white baked enamel interior. As a minimum, each enclosure section shall be furnished with a convenience receptacle, overhead fluorescent light activated manually by inside mounted switch and padlockable door handle.

Nameplates shall be provided for all electrical enclosures, stations, and equipment furnished by the Contractor. Nameplates shall be engraved laminated plastic, with 1/4" high white lettering on black background. Nameplates shall indicate equipment and its function. Nameplates shall be securely fastened with stainless steel drive screws or escutcheon pins.
B. Heating

MCC enclosures shall be provided with thermostatically controlled space heaters to prevent condensation. Heating shall be as designed by the manufacturer, unless shown specifically on the Construction Drawings.

Control power transformers with primary and secondary fuse protection shall be provided as required for proper operation of the heating equipment, unless shown otherwise on the Construction Drawings. Supply voltage shall be 120 volts, 60 Hz.

2.06 CONTROLS AND INSTRUMENTATION

A. Main Control Panel

1. General

The Main Control Panel (MCP) shall be housed in the MCC line up as shown on the Construction Drawings. The MCP shall consist of all relays, timers, switches, pushbuttons, lights, and components as shown on the Drawings and specified herein. The MCP shall control the pumping units in the automatic mode and provide alarm output to the RTU.

Control power to the MCP shall be 120 volt, 60 Hz, single phase from the lighting panel and shall be provided with a fuse for short circuit protection. The MCP shall also be provided with a 120 volt, auxiliary duplex receptacle, protected with a 20A thermal magnetic breaker within the MCP.

Selection of the "lead" pumping unit shall be controlled by District RTU.

Alarm lights for wet well level alarm conditions shall be located at the MCP. Alarm lights shall be push-to-test type, and shall be heavy-duty, oil-tight (NEMA 13).

2. Terminal Blocks

Terminal blocks shall be molded plastic with barriers and box lug terminals, and shall be rated 15 amperes at 600-Volts. White marking strips, fastened securely to the molded sections, shall be provided, and wire numbers or circuit identifications shall be marked thereon with permanent labels.

3. Signal and Control Circuit Wiring

a) Wire Type and Sizes. Where conductors are within the control panel, they shall be flexible stranded copper machine tool wire; these shall be UL listed Type MTW and shall be rated 600-Volts minimum 14 AWG. Where
conductors are run to MCC sections or to field locations, they shall be stranded copper minimum 12 AWG of the UL listed Type THWN.

b) **Wire Termination.** Conductors from field components or from MCC sections shall terminate in the MCP at terminal blocks. Control circuit wiring shall connect from terminal blocks to relays, timers, lights, and switches.

c) **Wire Marking.** Each signal, control, alarm, and indicating circuit conductor connected to a given electrical terminal point shall be designated by a single unique number which shall be shown on all shop drawings. Status, alarm, and control signal (IO) conductors to and from the RTU terminal strips shall be identified at both ends using the District's labeling designation shown on Drawing E-4, "RTU Status/Alarm Signal Wiring Diagram" (i.e. 4-6, 5-2, etc.). These numbers shall be marked on all conductors at every terminal using white numbered wire markers which shall be permanently marked heat-shrink plastic. Font shall be sized to be legible after shrinking.

B. Ultrasonic Level Control System

Each ultrasonic level control system shall include an ultrasonic level transducer and an ultrasonic controller. Each controller shall be flush mounted on the MCP door.

The transducer shall be capable of submergence without degradation. Transducer shall function over an ambient temperature range of -40°F to 200°F, and shall be rated by FM and CSA for Class I and II hazardous environments.

The transducer shall be provided with integral temperature sensor for speed-of-sound compensation and shall be Model Echomax XPS-15 as manufactured by Siemens, no substitutes.

Unit shall operate on 120V, 60 Hz power, unless otherwise specified, and provide 4-20 mA DC output, current isolated, into a maximum of 600 ohms (return to ground).

Controller shall function over an ambient temperature range of 15°F to 122°F. The controller shall be a single point, three relay type controller with auto-false echo suppression for fixed obstruction avoidance, Hydro Ranger 200 Series as manufactured by Siemens, no substitutes.

Interconnecting cable between transducer and controller shall be supplied with unit, and shall be suitable for a maximum system length of 300’. Contractor shall verify length of cable required for each specific installation. Cable shall be installed in a single run with no splices. Cable shall be installed in continuously grounded PVC-coated Rigid Galvanized Steel conduit. Conduit shall be installed a minimum of 8' from 480V conduits.
C. **Wet Well Level Float Switches**

Float switches shall be designed for operation in raw sewage and shall be hermetically sealed in high impact corrosion resistant polypropylene or polyurethane. Cables shall be minimum 16 gauge multi-strand polyvinylchloride (PVC) jacketed cable (oil and water resistant) suitable for underwater use and heavy flexing service. Float switches shall be rated minimum 4 amps at 120 VAC. Float switches shall be provided with stainless steel clamps and appurtenances suitable for mounting switches to a vertical 3/4-inch pipe.

Float switches shall be as manufactured by Flygt Corporation, Warrick Controls, Anchor Scientific Inc., Consolidated Electric Co., or equal.

Each float switch shall be provided with an intrinsically safe relay complete with reduced voltage transformer and contacts. Relays shall be specified for use in NEC, Class I, Division 1 (hazardous) locations, and shall be Factory Mutual or UL listed for explosion proof service. Intrinsically safe relays shall be as manufactured by Warrick (no substitutes).

D. **Magnetic Flow Meter**

Contractor shall provide a magnetic flow meter as specified hereinafter.

1. **Meter Design and Construction**

 The magnetic flow meter shall use characterized electromagnetic introduction to produce a voltage linearly proportional to the average flow rate. Each magnetic flow meter shall be microprocessor based, and utilize D.C. bipolar pulsed coil excitation, automatically re-zeroing after every cycle. The sensor shall be a Type 304 stainless steel tube, carbon steel flanged, and polyurethane lined, with a nominal diameter as shown on the Construction Drawings.

 External surfaces shall be factory finished with a high build epoxy paint or better for corrosion prevention. The flow meter electrodes and built in grounding electrodes shall be Type 316 stainless steel. If built in grounding is not provided, Type 316 stainless steel grounding rings shall be mounted in each end of the meter.

 The preamplifier input impedance shall not be less than 10^{11} ohms and shall be capable of operating with a power supply of 24 volts ±10 percent. The sensor shall be NEMA 4X and certified for use in Class 1, Division 1, Groups B, C, and D.

 Accuracy of the flow meter system shall be ±1 percent of rate above 1 fps and ±0.1 percent of full scale below 1 fps. Accuracy shall be verified by calibration in a
flow laboratory traceable to the National Institute of Standards and Technology. The meter shall incorporate an empty pipe detection feature which shall cause the meter to register zero flow when the sensor is not full.

2. Signal Converter/Transmitter

Signal converter shall be mounted remotely from the meter in the Main Control Panel (MCP). Signal converter shall be flush mounted on the MCP door as shown on the Construction Drawings. Contractor shall provide door cut-out, support brackets, and bezel as required for flush door mounting.

Signal converter shall provide a 16-character alphanumeric display indicating flow units as specified herein and total flow in Gallons X 100.

Features allowing menu selection, calibration, and program changes to be made from outside the housing shall be incorporated.

It shall produce a 4-20 mA DC output signal into a minimum load of 800 ohms, linear to flow, and a scaled pulsed output.

3. Manufacturer

Magnetic flow meters shall be the product of ABB, Endress & Hauser, or Siemens (no substitutions). Manufacturers shall modify or supplement standard equipment to provide features as specified herein. Manufacturers shall guarantee equipment against defects in material and workmanship for a period of two years from date of project acceptance.

E. Operator Interface Terminal (OIT)

OIT shall have a 5.7" TFT 65,536 color screen with resistive type touch screen, and 270 cd/m² brightness. OIT shall require 24 VDC power and comply with EN50081-2, EN50082-2, and FCC Class A standards. OIT shall be connected to District's Kingfisher RTU via 8-conductor flat communications cable and software shall be compatible with District's RTU. OIT shall be C-More Touch Panel Part No. EA7-T6CL-R as manufactured by Koyo Electronics (no substitutes).

2.07 BASIC CONSTRUCTION MATERIALS AND COMPONENTS

A. General

Specification requirements for basic construction materials and components utilized in sewage lift station construction are provided hereinafter. Not all construction materials and components required for lift station construction are included herein. Contractor
shall refer to the District’s Approved Materials List, Engineering Standard Detailed Provisions Sections, and the SSPWC for items not included in this Specification.

B. Valves

1. General

 All interior non-working ferrous surfaces other than stainless steel shall be given an epoxy coating.

 All valve interiors shall be fusion bonded epoxy coated (8 to 12 mils) in accordance with AWWA C550 (latest). District shall approve epoxy coating materials and methods before application. Completed coating shall be free from all defects and shall be inspected by use of low voltage holiday detecting and non-destructive thickness gauges.

 Where the manufacturer demonstrates in writing that it would be impossible to use the powder epoxy method without causing damage to the valve components, the use of a liquid epoxy will be permitted upon approval by the District.

2. Swing Check Valves

 Each pump shall be equipped with a full flow type swing check valve, minimum 4" size, with flanged body and be fitted with external lever and spring. Swing check valves shall be provided in accordance with AWWA C508. Valves shall be fully opening, have a flanged cover piece to provide access to the disc, and be designed for minimum water-working pressure of 150 psi. The valve body and cover shall be ductile iron or cast iron conforming to ASTM A-126, Class B, with flanges conforming to ANSI B 16.1, Class 125. The valve disc shall be cast iron, ductile iron, or bronze conforming to ASTM B 62. Valve seat and rings shall be bronze conforming to ASTM B 62. The hinge pin shall be of bronze or stainless steel. Swing check valves shall be the product of a single manufacturer and shall be APCO, Clow, Mueller, M&H, Kennedy, or Stockham, no substitutes.

3. Plug Valves

 Plug valves shall be of the non-lubricated eccentric type with cylindrical/rectangular port design. The port area shall be 100% of the standard pipe area. The valve body and plug shall be constructed of cast iron meeting the requirements of ASTM A-126, Class B. Valve bearing shall be constructed of corrosion resistant stainless steel. The entire plug shall be completely encapsulated with Buna N rubber. The valves shall be flanged with dimensions, facing, and drilling in full conformance with ANSI B 16.1, Class 125. With the plug in the full open position, valve shall have no cavities where debris can collect, have
minimal head loss and be capable of passing a clean out pig with the same nominal diameter as the adjacent pipe. Valves shall be equipped with worm gear operators conforming to AWWA C504, Section 3.8. All eccentric plug valves shall have a pressure rating of not less than 150 psi, for bubble tight shut off. Valves shall be the product of a single manufacturer and shall be DeZurik Corporation PEF, or equal.

Valves shall be installed in strict accordance with the manufacturer's written instructions and as specified in the District's Detailed Provisions Section 15105, Part 3.

4. Combination Sewage Air and Vacuum Valves

a) General

Combination sewage air and vacuum valves shall have an elongated body and be of the type that automatically exhausts large quantities of air during filling of the system, allows air to re-enter during draining of the system, and allows accumulating air to escape while in operation and under pressure.

b) Cast Iron Combination Sewage Air and Vacuum Valves

Each valve unit shall be supplied with isolation valve (solid wedge gate), blow-off valve, 1/2 inch back flushing shutoff valve, and 5 foot rubber supply hose with disconnect couplings. The unit shall be designed for an operating pressure of not less than 125 psi.

The body and cover shall be cast iron, internal float and float guide shall be stainless steel with Buna N seat, valves shall be gate type of bronze construction. Seat hardness shall be selected by the manufacturer for actual operating pressure of the system. Cast iron combination sewage air and vacuum valves shall be manufactured by Val-Matic Valve, Multiplex Manufacturing Corporation (Crispin), APCO by Valve and Primer Corporation, no substitutes.

c) Stainless Steel Combination Sewage Air and Vacuum Valves

Each valve unit shall be supplied with isolation valve (solid wedge gate). Backflush shutoff valve and supply hose are not required. The unit shall be designed for an operating pressure of not less than 125 psi. The body and cover shall be Type 316L stainless steel. Anti-surge orifice float, upper float, and lower float assembly shall be high density polyethylene. O-ring seats shall be EPDM rubber and seat hardness shall be selected by the manufacturer for actual operating pressure of the system. Stainless steel
combination sewage air and vacuum valves shall be Vent-O-Mat Series RGX, no substitutes.

C. **Piping and Fittings**

1. Ductile iron pipe shall conform with AWWA C 150 and C 151. Unless specified otherwise on the Construction Drawings, ductile iron pipe shall be minimum Class 53 thickness.

2. Flanged ductile iron pipe shall conform to AWWA C 115 and grooved ductile iron pipe shall conform to AWWA C 606. Flanges shall be ductile iron Class 125, ANSI B16.1.

3. Ductile iron fittings shall be Class 250 and shall conform to AWWA C 110. Ductile iron mechanical joint fittings shall be Class 350 and shall conform to AWWA C104.

4. All ductile iron pipe and fittings shall have an interior cement mortar lining of standard thickness in accordance with AWWA C 104.

5. Below grade ductile iron pipe and fitting shall be provided with an exterior asphaltic coating in accordance with AWWA C 151 and polyethylene encasement in accordance with AWWA C 105.

7. Stainless steel fittings 2 inches and smaller shall be ASTM A351, Grade 316, ANSI B16.3, Class 150, threaded.

8. Stainless steel fittings 2 1/2 inches and larger shall be ASTM A403 and A774, Grade 316, ANSI B16.9, B36.19. Schedule 40, standard weight, smooth-flow (mitered fittings are not acceptable).

9. Stainless steel flanges shall be ANSI A182, Grade 316, slip-on or weld neck ANSI B16.5, Class 150.

10. All stainless steel piping, fittings, and flanges shall be shop welded (field welding not permitted). All welds shall be pickled and passivated in accordance with Part 2.11 "Stainless Steel Passivation".
D. **Concrete**

Unless specified otherwise on the Construction Drawings, all concrete shall be Class AA per District Detailed Provisions, Section 03300. Cement shall be Type V per ASTM C 150. Prior to commencing construction, Contractor shall submit the proposed concrete mix design to the District for review and acceptance.

All concrete construction shall be in accordance with District Detailed Provisions, Sections 03150, 03200, and 03300.

E. **Miscellaneous Metals**

1. **Steel**

 a) **Stainless Steel.** Unless otherwise designated or approved, Contractor shall use Type 316 stainless steel alloy conforming to ASTM A-167 and ASTM A-276, latest editions, for plates and bars.

 b) **Steel Pipe.** Material shall conform to ASTM A-53, Grade B seamless galvanized as required, Schedule 40.

2. **Cast Iron**

 Material shall conform to ASTM A-48, Class 30, except as specifically designated otherwise.

3. **Ductile Iron**

 Material shall conform to ASTM A-536 using grade 60-40-18 or better, except as specifically designated otherwise.

4. **Aluminum**

 a) All plate, pipe, and structural shapes shall be new and shall conform to ASTM B209 (Plate), B308 (Shapes), B429 (Pipe and Tubing), B211 (Bar Stock), and applicable Federal Specifications for 6061-T6 alloy, unless otherwise designated.

 b) Aluminum pipe rail shall be of 6061-T6 alloy and be Schedule 40 or greater.
c) Alloys and tempers for various members where not otherwise designated, shall be as required for proper forming and fabrication to meet or exceed structural requirements, and shall be of alloys specially produced to best achieve specified color anodized finishes. Contractor shall provide supporting printed recommendations from parent aluminum producer. For sheet fabricated members Contractor shall use only homogenous aluminum products and no clad products.

d) Contingent upon alloys being welded, Contractor shall use only inert gas shielded arc or resistance welding process with filler alloys as specified in the UBC. Contractor shall not use any process requiring a welding flux.

5. Stainless Steel Bolts

Except as otherwise designated or specified, all bolts, anchor bolts, cap screws, studs, and fasteners shall be Type 316 conforming to ASTM F-593; nuts shall conform to ASTM F-594.

6. Flange Hardware

With the exception of stainless steel flanges, all flange bolts, nuts, and fasteners shall be A325. Nuts shall be heavy hex cold-press semi-finished steel per ASTM A194-2,2H. Threads shall be lubricated with an approved anti-seize compound.

7. Deferred Bolting Devices

Deferred bolting devices are noted on the Construction Drawings as wedge anchors, expansion anchors, or epoxy anchors. Deferred bolting devices shall be used in lieu of anchor bolts only where specifically noted or detailed. Unless noted otherwise on the Construction Drawings, deferred bolting devices shall be 316 stainless steel, shall be installed in accordance with current I.C.B.O. Research Report Approval, and shall consist of the following:

a) Wedge anchors or expansion anchors shall be ITW Ramset/Redhead Trubolt Anchors, Hilti Kwik Bolt II Anchors, Simpson Strong-Tie Strong-Bolt 2 Anchors, or equal.

b) Epoxy anchors shall be ITW Ramset/Redhead Epcon C6+Epoxy Anchors, Hilti HIT-RE 500-SD Adhesive Anchors, Simpson Strong-Tie Set XP Epoxy Anchors, or equal.

c) Wedge anchors or expansion anchors shall not be used inside the wet well or for anchorage of any vibrating machinery or equipment.
8. Galvanizing

a) **Iron and Steel.** Galvanizing shall conform to ASTM A123, with minimum weight per square foot of 1.25 ounces.

b) **Ferrous Metal Hardware Items.** Galvanizing shall conform to A153, with average coating weight of 1.25 ounces per square foot.

c) **Touch-Up Material for Galvanized Coatings.** Galvanized coatings marred or damaged during erection or fabrication shall be repaired by use of DRYGALV as manufactured by the American Solder and Flux Company, Galvalloy, Galvion, or equal, applied in accordance with the manufacturer's instructions.

F. Electrical Conduit and Conductors

1. Conduit

a) **PVC-Coated Rigid Galvanized Steel Conduit.** Conduit shall be Schedule 40 steel, pipe size, finished inside and out by hot-dipped galvanizing, and shall conform with ANSI C80.1 and UL. A PVC coating of 40 mils (minimum) thickness shall be bonded to the outer galvanized surface of the conduit and a urethane coating shall be applied to the interior surface of the conduit. The bond between the PVC coating and conduit surface shall be greater than the tensile strength of the plastic. A PVC jacketed coupling shall be furnished with each length of conduit. PVC-coated Rigid Galvanized Steel conduit and fittings shall be manufactured by Robroy, Occidental, or equal.

b) **Rigid Non-Metallic Conduit.** Conduit shall be UL listed, sunlight resistant, Schedule 40 PVC conduit, rated for 90 degrees C conductors, and manufactured to NEMA TC-2 standards. Couplings and connectors shall be of the same manufacturer as the conduit and shall be joined as recommended by the manufacturer. All PVC conduits shall be terminated with approved connectors or end bells.

2. Conductors

a) **General**

 Cables and wires shall be new, stranded conductors, solid copper, not smaller than #12 AWG (except shielded control wires and internal control wires in MCCs and control panels) unless otherwise shown on Drawings. Insulation shall bear manufacturer's trademark, insulation designation,
voltage rating, and conductor size at regular intervals. Each type of cable or wire shall be the product of a single manufacturer.

Conductors for power service, power feeders, power circuits, and lighting feeders, lighting circuits, and external control circuits shall be stranded copper, rated 600 volt, with 75 degrees C THWN insulation, UL approved, for installation underground, in concrete, in masonry, or in wet locations.

b) Color Coding

System conductors shall be factory color coded by integral insulation pigmentation with a separate color as specified herein. Conductors #6 AWG and larger may be color coded with an approved colored marking tape at all terminations and in all junction boxes, pull boxes, and manholes. Each voltage system shall have a color coded system that shall be maintained throughout the project. Approved conductor colors are as follows:

<table>
<thead>
<tr>
<th>Power System</th>
<th>Service</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>480V, 3 Phase, 4 Wire</td>
<td>Phase A</td>
<td>Brown</td>
</tr>
<tr>
<td></td>
<td>Phase B</td>
<td>Orange</td>
</tr>
<tr>
<td></td>
<td>Phase C</td>
<td>Yellow</td>
</tr>
<tr>
<td></td>
<td>Neutral</td>
<td>White</td>
</tr>
<tr>
<td>120/208/240V, 3 Phase, 4 Wire</td>
<td>Phase A</td>
<td>Black</td>
</tr>
<tr>
<td></td>
<td>Phase B</td>
<td>Red</td>
</tr>
<tr>
<td></td>
<td>Phase C</td>
<td>Blue</td>
</tr>
<tr>
<td></td>
<td>Neutral</td>
<td>White</td>
</tr>
<tr>
<td>All Equipment</td>
<td>Ground</td>
<td>Green</td>
</tr>
<tr>
<td>All System</td>
<td>Ground</td>
<td>Bare Copper</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Control System</th>
<th>Service</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLC (Status and Control)</td>
<td>Digital Input</td>
<td>Blue</td>
</tr>
<tr>
<td></td>
<td>Digital Output</td>
<td>Brown</td>
</tr>
<tr>
<td>120V</td>
<td>Positive</td>
<td>Red</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td>White</td>
</tr>
<tr>
<td>24V</td>
<td>Positive</td>
<td>Yellow</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td>Blue</td>
</tr>
</tbody>
</table>
Submersible Lift Station without Standby Power
Section 11210 – 28

12V
Positive Red
Negative Black

120V
Switched Leg Not Black, Red or Blue

480V
Switched Leg Not Brown, Orange, or Yellow

G. Device Boxes, Junction Boxes, and Fittings

1. Device Boxes (Only Permitted for Locations Beyond 20' of Wet Well)

Unless otherwise noted on the Drawings, device boxes shall be malleable iron constructed with zinc or cadmium plating and enamel finish, minimum single gang size, deep box type, with threaded hubs and solid gasketed cover. Device boxes shall be properly sized for required circuitry or splicing. Surface mounted boxes shall be furnished with mounting lugs. Where located outdoors, device boxes shall be waterproof. Device boxes shall be Crouse-Hinds FD, Appleton FD, or equal.

2. Junction Boxes (Only Permitted for Locations Beyond 20' of Wet Well)

Unless otherwise noted on the Drawings, junction boxes shall be malleable iron constructed, rain tight, dust tight, minimum size 4"x4"x3", drilled and tapped or field installed with slip holes (alternate hub plates are acceptable). Junction boxes shall be properly sized for the number and sizes of conductors and conduit entering the box and required splicing. Provide feet where necessary for surface mounting. Junction boxes shall be Crouse-Hinds WAB, Appleton RS, or equal.

3. Device Boxes (Required for Locations Within 20' of Wet Well)

Where specified on the Drawings, device boxes shall be constructed of 316 stainless steel, minimum single gang size, deep box type, with gasket and 316 stainless steel solid cover. Device boxes shall be properly sized for required circuitry or splicing. Surface mounted boxes shall be furnished with mounting lugs or feet. Device boxes shall be NEMA 4X as manufactured by BEL Products, Inc., Cushing Manufacturing Co., or equal.

4. Junction Boxes (Required for Locations Within 20' of Wet Well)

Where specified on the Drawings, junction boxes shall be constructed of 316 stainless steel, with gasket and 316 stainless steel solid cover. Junction box minimum size shall be 4"x4"x3". Junction boxes shall be properly sized for required circuitry or splicing. Provide feet where necessary for surface mounting.
Junction boxes shall be NEMA 4X as manufactured by BEL Products, Inc., Cushing Manufacturing Co., or equal.

5. **Fittings**

Conduit fittings shall be provided where shown on the Drawings or required to facilitate installation of the electrical conduit and equipment.

a) Conduit fittings shall be PVC coated metallic fittings and furnished by the same manufacturer as the PVC coated conduit to provide a complete and compatible protective system. PVC coated fittings and couplings shall have specially formed sleeves to tightly seal to conduit PVC coating. The sleeves shall extend beyond the fitting or coupling a distance equal to the conduit outside diameter or two inches, whichever is greater.

b) Non-metallic fittings shall be compatible with the non-metallic conduit used and shall be of the same manufacturer.

c) Fittings shall be of the shapes, sizes, and types required to facilitate installation or removal or conductors and cables from the conduit.

d) Connectors, couplings, locknuts, bushings, and caps used with PVC-coated Rigid Galvanized Steel conduit shall be threaded and thoroughly galvanized. All exposed surfaces shall be PVC coated. Bushings shall be insulated and shall be threaded malleable iron with thermoplastic liner. Insulated grounding bushings shall be provided with threaded malleable iron body, insulated thermoplastic liner throat, and "lay-in" ground lug with compression screw.

e) Metallic conduit unions shall be "Erickson" couplings, or approved equal. Running threads are not acceptable.

H. **Channel (Unistrut) Supports**

Unless otherwise specified, support channel (Unistrut) shall be single strut type, 1-5/8" x 1-5/8", 12 gauge ASTM A240, Type 316 stainless steel.

I. **Protective Coatings**

1. **General**

 a) All coating materials supplied under this provision shall be manufactured by Tnemec, PPG (Ameron), or Carboline, no substitutes. Products specified herein are those which have been evaluated and recommended by the
manufacturers for the specific service. Only replacement product recommended by said manufacturers will be considered for substitutions.

b) All materials shall be brought to job site in original sealed containers. Contractor shall provide coating material name, formula or specification number, batch number, color and date of manufacture to the District. Coating materials shall not be used until the District has inspected contents and checked information on containers or label. Materials exceeding storage life recommended by the manufacturer shall be rejected.

c) All coatings and paints shall be stored in enclosed structures to protect them from weather and excessive heat or cold. Flammable coatings or paints must be stored to conform with city, county, state, and federal safety codes for flammable coating or paint materials. Water based coatings or paints shall be protected from freezing.

d) Contractor shall use products of same manufacturer for all coating systems unless approved in writing by the District.

e) All coatings shall comply with local, state, and federal air pollution control regulations including, but not limited to, SCAQMD Rule 1113 and Rule 1107. These regulations change frequently. If a listed coating does not meet local, state, and federal air pollution control regulations at the time the work is actually performed, the Contractor shall provide the manufacturer's compliant, recommended substitute coating at no additional cost to the District.

f) All colors and shades of colors of all coats of protective coating material shall be as selected by the District.

g) Finish and Protective Coating

Coatings shall be applied in accordance with the table below:

<table>
<thead>
<tr>
<th>Item</th>
<th>Coating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exterior Concrete Surfaces</td>
<td>No coating required.</td>
</tr>
<tr>
<td>Wet Well Below Grade Exterior Concrete Wall Surfaces</td>
<td>No coating required.</td>
</tr>
<tr>
<td>Wet Well Interior Concrete Wall Surfaces or Slabs</td>
<td>Coat per Service Condition D.</td>
</tr>
<tr>
<td>Concrete Masonry Surfaces</td>
<td>No coating required, unless shown on Drawings.</td>
</tr>
<tr>
<td>Item</td>
<td>Coating</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Exposed Ferrous Metal Piping, Valves, Fittings, and Appurtenances</td>
<td>Coat per Service Condition A. Color coat and label per Specification requirements.</td>
</tr>
<tr>
<td>Below Grade Ferrous Metal</td>
<td>Coat per Service Condition C.</td>
</tr>
<tr>
<td>Equipment and Motors</td>
<td>Factory coating. Touch up where damaged per manufacturers requirements.</td>
</tr>
<tr>
<td>Miscellaneous Ferrous Metal (Exterior)</td>
<td>Coat per Service Condition A.</td>
</tr>
<tr>
<td>Hot Dipped Galvanized Steel</td>
<td>No coating required.</td>
</tr>
<tr>
<td>Stainless Steel</td>
<td>No coating required.</td>
</tr>
<tr>
<td>Exposed PVC and CPVC Piping</td>
<td>Coat per Service Condition E.</td>
</tr>
<tr>
<td>Aluminum</td>
<td>No coating, except where bearing against or embedded in concrete.</td>
</tr>
<tr>
<td>NEMA 1, 12, or 3R Electrical Panels</td>
<td>Factory coating, baked enamel. Touch up where damaged.</td>
</tr>
<tr>
<td>Electrical Device Boxes</td>
<td>Factory PVC coating.</td>
</tr>
<tr>
<td>Pipe Supports</td>
<td>Hot dipped galvanized or stainless steel as noted.</td>
</tr>
<tr>
<td>Exposed Electrical Conduit</td>
<td>No additional coating required.</td>
</tr>
<tr>
<td>Below Grade Copper Tubing and Brass Pipe</td>
<td>25 mil (min.) Aqua Shield or Stream Line Protec.</td>
</tr>
</tbody>
</table>
h) **Pipe Color Code and Labeling**

All exposed and/or unburied pipe, including steel, copper and brass tubing, galvanized pipe, polyvinyl chloride pipe, fiberglass reinforced pipe, and stainless steel pipe shall be identified by color to show its use/function. Color bands of an approved tape type may be used on PVC, FRP, and stainless steel pipe and all other pipe not readily susceptible to painted finish. Bands shall be adhesive type with extra strength and suitable for continuous duty at 250°F. All markers shall have a protective silicone film. Color shall be as specified in the table below:

<table>
<thead>
<tr>
<th>Duty</th>
<th>Color Code</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Vent</td>
<td>Gray</td>
<td>AV</td>
</tr>
<tr>
<td>Air Valve Drain</td>
<td>Gray</td>
<td>AVD</td>
</tr>
<tr>
<td>Drain</td>
<td>Gray</td>
<td>D</td>
</tr>
<tr>
<td>Four Air</td>
<td>White</td>
<td>FA</td>
</tr>
<tr>
<td>Potable Water</td>
<td>Safety Blue</td>
<td>PW</td>
</tr>
<tr>
<td>Raw Sewage Backflush</td>
<td>Brown</td>
<td>RSB</td>
</tr>
<tr>
<td>Raw Sewage Discharge</td>
<td>Brown</td>
<td>RSD</td>
</tr>
<tr>
<td>Raw Sewage Forcemain</td>
<td>Brown</td>
<td>RSF</td>
</tr>
<tr>
<td>Sanitary Drain</td>
<td>Brown</td>
<td>SD</td>
</tr>
<tr>
<td>Seal Water</td>
<td>Gray</td>
<td>SW</td>
</tr>
</tbody>
</table>

Both the direction of the fluid flow and the duty label of the pipe shall be stenciled on all above grade or exposed pipe (in Safety Yellow) at least once every twenty-five (25) feet and at every change of direction. Color bands (if used) shall be spaced at fifteen (15) foot intervals and every change in direction. The size of the letters and color bands shall be as specified in the table below:

<table>
<thead>
<tr>
<th>Outside Diameter of Pipe or Covering (Inches)</th>
<th>Width of Color Band (Inches)</th>
<th>Height of Label Letters (Inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4 to 1-1/4</td>
<td>1</td>
<td>1/2</td>
</tr>
<tr>
<td>1-1/2 to 2</td>
<td>1</td>
<td>3/4</td>
</tr>
<tr>
<td>2-1/2 to 6</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>8 to 10</td>
<td>6</td>
<td>2-1/2</td>
</tr>
<tr>
<td>Over 10</td>
<td>6</td>
<td>3-1/2</td>
</tr>
</tbody>
</table>

i) **Stencil Valve Tag Numbers on Piping**

After the painting of process piping is complete, the Contractor shall stencil the tag numbers, as supplied by the District, of all valves on the pipe adjacent to the valve for pipe 2 inches and over. Characters shall be 1 inch high
minimum and shall be oriented to be visible from the valve operating position. When the valve has extended operator shaft or chain operator, the number shall be placed both at the operating position and at the valve, if practicable. The latter requirement does not apply if the valve is buried or in a pit. Valves in pipes under 2 inches shall have characters as large as the pipe will permit or at the District's option, on an adjacent surface. Characters shall be preferably white; however, if this would not provide sufficient contrast to the pipe, the District may select another color. Paint used shall be of the same type and quality as used for painting the pipe.

2. Service Condition A

Ferrous metals (excluding stainless steel) subject to outdoor exposure such as outdoor tanks, piping, valves, and equipment, etc. shall receive the following surface preparation and coating:

a) **Surface Preparation.** All surfaces shall be field sandblasted in conformance with Steel Structures Painting Council Specifications SSPC-SP10 and National Association of Corrosion Engineers Surface Finish NACE No. 2 (Near-White Blast Cleaning) to achieve a 1.5-2.5 mil (40-60 micron) blast profile.

b) **Application.** Application shall be in strict accordance with manufacturer's recommendations. The minimum and maximum required times between coats shall be per the manufacturer's product data sheet. Written requests for shop surface preparation and application of the prime coat shall be reviewed and approved by District on a case-by-case basis. If approved by District, shop applied prime coat surface shall be field scarified by brush-blasting prior to application of intermediate coat.

c) **Coating System.** Except as otherwise noted, the prime coat shall have a minimum dry film thickness (MDFT) of 4.0 mils. The intermediate coat shall have a MDFT of 4.0 mils and the finish coat shall have a MDFT of 2.0 mils. The total dry film thickness of the complete system shall be 10.0 mils, minimum.

<table>
<thead>
<tr>
<th>PPG System</th>
<th>Primer – Amerlock 2VOC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Intermediate – Amerlock 2VOC</td>
</tr>
<tr>
<td></td>
<td>Finish - Amerishield VOC</td>
</tr>
<tr>
<td>Carboline System</td>
<td>Primer – Carboguard 890VOC</td>
</tr>
<tr>
<td></td>
<td>Intermediate – Carboguard 890VOC</td>
</tr>
<tr>
<td></td>
<td>Finish - Carbothane 134 MC</td>
</tr>
</tbody>
</table>
3. Service Condition B

Ferrous metals (excluding stainless steel) submerged or intermittently submerged in sewage or similar corrosive liquid, including all ferrous metal located within the lift station wet well, shall receive the following surface preparation and coating:

a) **Surface Preparation.** All surfaces shall be field sandblasted in conformance with SSPC-SP5 and NACE No. 1 (White Metal Blast Cleaning) to achieve a 3 mil (75 micron) angular anchor blast profile.

b) **Application.** Application shall be in strict accordance with manufacturer's recommendations. If recoating is required to correct pinholes, holidays or insufficient coating thickness; surfaces shall be scarified by brush-blasting prior to recoat.

c) **Coating System.** Except as otherwise noted, one or two coats shall be applied at a MDFT of 30.0 mils.

- **PPG System** Sigma Novguard 840
- **Carboline System** Carboguard 954HB
- **Tnemec System** Series 435 Perma-Glaze

4. Service Condition C

Buried metal surfaces shall receive the following surface preparation and coating:

a) **Surface Preparation.** All surfaces shall be cleaned in conformance with SSPC-SP10/NACE 2 (Near White Blast Clean) with a 2 mil anchor blast profile.

b) **Application.** Application shall be in strict accordance with manufacturer's recommendations. The minimum time required between coats and prior to backfilling shall be per the manufacturer's product data sheet.
c) **Coating System.** Except as otherwise noted, two or more coats shall be applied to a minimum total dry film thickness of 30 mils.

- **PPG System**
 Sigma Novaguard 840

- **Carboline System**
 Carboguard 954HB

- **Tnemec System**
 Series 435 Perma-Glaze

5. **Service Condition D**

Concrete subject to continuous or intermittent submergence in sewage, including all interior surfaces of the wet well, shall receive the following surface preparation and coating:

a) **Surface Preparation.** All surfaces shall be thoroughly cleaned by sandblasting in conformance with SSPC–SP13/NACE 6, ICRI CSP 5 surface preparation of concrete or other approved methods, removing all traces of previous materials. Remove all loose concrete by chipping, etc. to leave only sound firmly bonded concrete. All cracks and voids shall be filled with the specified epoxy filler and surfercer. Final surface shall be smooth and free of voids, cavities, dirt, dust, oils, grease, laitance or other contaminants.

b) **Application.** Application shall be by spray-on and/or trowel method and shall be in strict accordance with manufacturer's recommendations. The minimum and maximum required times between coats shall be per the manufacturer's product data sheet. If recoating is required to correct pinholes or insufficient system coating thickness, surfaces shall be brush-blasted prior to recoat.

c) **Coating System.** The coating system shall be specifically manufacturer for highly corrosive environments caused by immersion and intermittent immersion in municipal wastewater. Minimum total dry film thickness of the coating system shall be 125 mils.

- **Carboline System**
 Filler - Plasite 5371

- **Tnemec System**
 Filler/Surfercer - Mortar Clad – Series 218
 Lining – Perma-Shield H25 – Series 434
 Finish – Perma-Glaze – Series 435

- **Sauereisen System**
 Filler/Surfercer - Resto Krete No. 209
 Epoxy Lining - Sewergard No. 210X
6. Service Condition E

Exposed PVC and CPVC piping shall receive the following surface preparation and coating (coating to be used for this category shall be certified by the PVC and CPVC piping manufacturer to be completely acceptable and non-injurious to the material):

a) **Surface Preparation**

Surface preparation shall consist of hand sanding to remove gloss. All remaining dust shall be removed with vacuum brushing or tack rag. Sanded surfaces shall not be washed with either solvent or water.

b) **Application**

Application shall be in strict accordance with manufacturer's recommendations.

c) **Coating System**

Except as otherwise noted, two coats shall be applied at 2.0 mils per coat to a total 4.0 mil MDFT for the system.

Carboline System Carbothane 134 MC

PPG System Amershield VOC

Tnemec System Series 80 Endurashield

7. Architectural Paint Finishes

Concrete Masonry Paint on Concrete

Frazee Paint System:
First Coat - 203 Duratec II Exterior 100% Acrylic Flat
Second Coat - 203 Duratec II Exterior 100% Acrylic Flat

Sherwin Williams System:
First Coat – Loxon Concrete Masonry Primer
Second Coat – Loxon Acrylic Coating
Vista Paint System:
- First Coat: Vista 4600 Uniprime II Masonry Primer
- Second Coat: Vista 2000 Duratone 100% Acrylic Flat
- Third Coat: Vista 2000 Duratone 100% Acrylic Flat

Dunn Edwards System:
- First Coat: Eff Stop Premium Primer (ESPR00)
- Second Coat: Evershield 100% Acrylic (EVSH10)
- Third Coat: Evershield 100% Acrylic (EVSH10)

8. Aluminum Metal Isolation

All aluminum bearing on, or embedded in, concrete shall be coated with a wash primer (0.5 mils) followed by one coat (8 mils) of heavy bodied bituminous paint, Carboline Bitumastic Super Service Black or Tnemec 46-465.

J. Asphalt Concrete Pavement

Unless specified otherwise on the Construction Drawings, all asphalt concrete pavement shall be per District Detailed Provisions, Sections 02201 and 02513 and as specified hereinafter.

Asphalt concrete pavement shall be hot placed to 4" thickness minimum placed over 6" of crushed miscellaneous base (per SSPWC Section 200-2.4) and compacted to 95 percent relative compaction minimum. Pavement shall be placed in two lifts. The first lift shall be C1-PG64-10 and the second lift shall be D2-PG64-10.

Unless specified otherwise, prior to placing crushed miscellaneous base, the subgrade shall be scarified to a minimum depth of 6" and then compacted to 95 percent relative compaction.

K. Danger and Warning Signs

Equipment Danger Signs and Warning Signs shall be provided as specified herein. Signs shall be constructed of 40-mil aluminum with rounded corners and mounting holes at
Submersible Lift Station without Standby Power
Section 11210 – 38

Each corner. Signs shall resist fading in direct sunlight and be suitable for temperatures ranging from -40°F to 176°F. Manufacturer shall submit a list of all print and background color combinations for confirmation by District. Unless noted otherwise, text size shall be 3/4" tall and signs shall be sized accordingly. Indoor/outdoor signs shall be Style No. M0719 by Seton, or approved equal.

Typical Danger Sign (sign shall be stenciled directly on access hatch, or mounted to access hatch with stainless steel rivets, as directed by District):

Line 1 "DANGER" Yellow letters on black background
Line 2 "CONFINED SPACE" black letters on yellow background
Line 3 "PERMIT REQUIRED"
Line 4 "PRIOR TO ENTRY"
Location Mount on wet well access hatch

Typical Warning Sign:

Line 1 "WARNING" white letters on red background
Line 2 "DO NOT DRINK" black letters on white background
Location Mount adjacent to each hose bib

2.08 MANUAL TRANSFER SWITCH

A. General

The manual transfer switch shall be an integral part of power service and motor control center, and shall be mounted and wired at the factory, including mounting and wiring of door-mounted accessories. The manual transfer switch (MTS) shall be as manufactured by ASCO, Olympian, Russelectric, or equal. The MTS and accessories shall be UL listed and labeled and tested per UL Standard 1008 and comply with NEMA ICS2-447, NFPA 70, NFPA 99, and NFPA 110.

B. Ratings

The MTS controls and accessories shall be rated for continuous (24-hour) duty as installed. The switch shall be a 3-pole, double-throw, having the "normal" and "standby" positions mechanically interlocked, and shall be suitable for application to a 3-phase, 3-wire, 60 Hz, 480-volt system. The minimum continuous current rating at 480 volts shall be as indicated on the Construction Drawings. The MTS shall be rated to withstand a short circuit current of 35,000 amperes (symmetrical) without parting of the switch contacts. The MTS shall be capable of operation under load.
C. **Control and Accessory Features**

The MTS shall be provided with the following control, accessory and additional features, which shall be fully wired at the factory:

1. The transfer switch shall be actuated by a single local electrical operator, momentarily energized and connected to the transfer mechanism by a simple overcenter-type linkage.

 The normal and emergency contacts shall be positively interlocked mechanically and electrically to prevent simultaneous closing. Main contacts shall be long life, high pressure, silver alloy designed to resist burning and pitting. Contacts shall be mechanically locked in position in both the normal and emergency positions without the use of hooks, latches, magnetics, or springs. Separate arcing contacts designed for rapid and reliable arc quenching and equipped with magnetic blowouts shall be provided. Interlocked molded case circuit breakers or contactors are not acceptable.

2. The transfer switch shall be capable of transfer successfully in either direction with 70 percent of rated voltage applied to the switch terminals.

3. The transfer switch shall be equipped with a safe manual operator designed to prevent injury to operating personnel and capable of switching under load. The manual operator shall provide the same contact-to-contact transfer speed as the electrical operator to prevent a flashover from switching the main contacts slowly.

4. All switch and control elements shall be serviceable or removable from the front of the switch enclosure without disconnection of drive linkages, power conductors, or control conductors.

D. **Front Panel Devices (Inside MCC NEMA 3R Wrap)**

Provide control switches and indicator lights mounted on panel inside door front for:

- Transfer - Selector switch to cause transfer to normal source or emergency source.

Provide LED-type switch position and source available indicator lamps on the front of the transfer switch cabinet.

2.09 **PRECAST REINFORCED CONCRETE WET WELL**

Wet well shaft shall be constructed of Class IV reinforced concrete pipe (RCP) per ASTM C76 with two circular reinforcement cages (quadrant or elliptical cages will not be allowed) and flush bell-and-spigot joints. Bell-and-spigot joints shall be provided with rubber gaskets and shall be suitable for a hydrostatic head of 50' per ASTM C361. Prior to backfill of the wet well structure, Contractor shall
perform a field hydrostatic test by filling the wet well shaft with potable water up to the top of the shaft in accordance with Specification Section 03300, Part 3.17. No visible leakage will be allowed.

Pipe sections (except top and bottom sections) shall be minimum 8’ long. Top and bottom section lengths shall be adjusted to achieve the required wet well and bypass manhole height and to provide 12" minimum clearance between RCP joints and pipe penetrations.

To assist Contractor during installation, RCP may be furnished with 316 stainless steel lifting lugs cast into the concrete during fabrication. Pipe manufacturer shall be responsible for lifting lug design and placement. Lifting aids installed after the pipe has been fabricated, by drilling or coring the pipe, will not be acceptable.

RCP shall be as manufactured by Thompson Pipe Group-Rialto, Ameron, or equal.

2.10 STAINLESS STEEL PASSIVATION
All stainless steel sub-assemblies shall be passivated after welding for corrosion resistance and to provide a superior surface finish. All stainless steel products shall be fabricated in the shop and passivated at the point of manufacture. Field fabrication or field passivation will not be permitted except for the outer flanges of the discharge piping through the wet well wall per Construction Drawings. Field passivation of the field welded discharge pipe flanges shall be accomplished using pickling paste.

All welds, heated areas of stainless steel parts, and heat affected zones of welds shall be cleaned, descaled and passivated per ASTM A 380. Passivation by use of pastes or sprays will not be permitted. Unless specified otherwise, passivation by means of electrochemical treatment, including electropolishing or electropolishing, will not be permitted.

Passivation shall include the following (as a minimum):

A. The surfaces of all stainless steel products shall be thoroughly degreased and cleaned. Surfaces shall be free of foreign material contamination (ie. markers, chalk, paint, soil, grease, or oil). Cleaning solvents shall be non-chlorinated. Water-break testing per ASTM A 380 shall be performed after cleaning to ensure all foreign material is removed prior to passivation. No break shall be permitted in the film as it drains from the vertical surface.

B. Upon successful completion of the cleaning process, all stainless steel products shall be glass-bead blasted with clean glass that contains no ferrous materials. All surfaces shall be uniformly blasted and shall be free of rust, free iron, weld scale, heat tint oxides, arc strikes, tool marks, gouges, and scratches that occurred in the procurement or fabrication stage. The finish of all stainless steel surfaces shall be of a high quality and as a minimum, equal to the milled or hot rolled condition specified by the material specification.
C. Upon successful completion of the descaling process, all stainless steel products shall be acid passivated for corrosion resistance and to provide a superior surface finish in accordance with ASTM A 967. The passivated parts shall exhibit a chemically clean surface and shall not show any pitting, etching, or frost. No heat tint or discoloration is allowed.

D. All stainless steel products shall be tested to ensure corrosion resistance prior to shipment to site. As a minimum, the testing shall include a water immersion test and a salt water test. Testing procedures shall follow ASTM A 967 and shall be safe for potable water applications. Prior to shipment, a letter of certification from the fabricator shall be provided to the District indicating the passivation procedures performed, test procedures performed including test results, and statements of certification that all work was performed in accordance with ASTM A 380, A 967, and as specified herein.

The Contractor shall passivate, or have vendors pickle and passivate, all fabricated stainless steel parts including pipe sections, straight spools, fittings, piping components, pipe supports, nuts, bolts, washers, cover plates, equipment and equipment parts and sub components. Stainless steel electrical panels and enclosures manufactured by regular commodity enclosure manufacturers are exempt from the submittal requirements, but will be subject to inspection upon delivery as described below.

Contractor shall submit the passivation method for each fabricated stainless steel component to the District for approval prior to passivation.

Finish requirement: Remove free iron, heat tint oxides, weld scale, and other impurities, and obtain a passive finished surface.

The District shall have the right to inspect stainless steel parts upon delivery for proper finish. The District reserves the right to reject deliveries of stainless steel parts with visible signs of improper passivation at the Contractor's expense. The standard for rejection of stainless steel parts will be the presence of free iron, rust, heat tint oxides, and/or weld scale that is visible. The Contractor shall protect stainless steel parts during delivery to minimize the occurrence of nicks and burs. Free iron and or rust in nicks and burs caused by improper protection during delivery shall also be a reason for rejection and replacement at the Contractor's expense.

PART 3 - EXECUTION

3.01 GENERAL

A. Installation of all equipment and appurtenances shall conform to the requirements of the manufacturer's specifications and installation instructions. When code requirements apply to installation of materials and equipment, the more stringent
requirements, code, or manufacturer's specifications and installation instructions shall govern the work.

B. Contractor shall verify all dimensions and conditions at the site and cross check details and dimensions shown on the Structural Drawings with related requirements on the Civil, Mechanical, and Electrical Drawings and Equipment Shop Drawings. Floor and wall openings, sleeves, variations in the structural slab elevations and other civil, mechanical, or electrical requirements must be coordinated before the contractor proceeds with construction.

C. The precise dimensions and locations of all openings shall be determined from structural, civil, mechanical, electrical, or similar requirements for the actual equipment being furnished. Shop Drawings with adequate accurate dimensions must be submitted and reviewed prior to contractor constructing facilities including concrete, wall, connecting piping or electrical that are affected by said equipment.

D. The contractor is advised that the work on this project may involve working in a confined air space. Contractor shall be responsible for "Confined Air Space" Article 108, Title 8, California Administrative Code.

E. Contractor shall be responsible for maintaining project site security. Project site shall remain secured by temporary chain link fence at all times.

F. Contractor shall clean inside of all new pipelines by flushing after successful passing of pressure testing.

3.02 COORDINATION

The Construction Drawings show in a diagrammatic form the arrangements desired for the principal equipment, piping, and similar appurtenances, and shall be followed as closely as possible. Proper judgment must be exercised in carrying out the work to secure the best possible headroom and space conditions throughout, to secure neat arrangement of piping, valves, fixtures, hangers, and similar appurtenances, and to overcome local difficulties and interferences of structural conditions wherever encountered.

The Contractor shall take all measurements for his work at the installation sites, verify all subcontractor drawings and be responsible for the proper installation, within the available space for the equipment and material specified and shown on the Construction Drawings, and must secure the approval of the District for any variations before making any changes.

3.03 INSPECTION

Inspect each item of equipment for damage, defects, completeness, and correct operation before installing. Inspect previously installed related work and verify that it is ready for installation of the equipment.
3.04 PREPARATION
Prior to installing equipment, ensure that installation areas are clean and that concrete or masonry operations are completed. Maintain the areas in a broom-clean condition during installation operations. Clean, condition, and service equipment in accordance with the reviewed Instruction Manuals and requirements in other Sections of these Specifications before installing.

3.05 WORKMANSHIP

A. Preparation, handling, and installation shall be in accordance with manufacturer's written instructions and technical data particular to the product specified and/or approved, except as otherwise specified.

B. Work shall be furnished and placed in coordination and cooperation with other trades.

C. Electrical work shall conform to the National Electrical Contractor's Association Standard of Installation for general installation practice.

3.06 GRADING AND SITE WORK
Unless specified otherwise on the Construction Drawings, all grading and site work shall be per District Detailed Provisions, Sections 02201 and 02513 and as specified hereinafter.

A. Site grading shall be performed in accordance with contract documents, soils report, and grading code of Riverside County, including any special requirements of the grading permit. An approved copy of the grading permit and site/grading plan shall be on site while work is in progress.

B. Excavated soils may be utilized for selected fill material provided these materials are free of vegetative matter and other deleterious substances and shall not contain rocks or irreducible materials with a maximum dimension greater than 8". The final surfaces shall be wheel rolled to a smooth, well compacted surface at both subgrade and at finished grade.

C. Selected backfill material around proposed wet well shall be placed in layers which, when compacted, shall not exceed 8" in thickness. Each layer shall be spread, moistened, and compacted uniformly to insure all backfill is properly compacted. After each layer of backfill has been placed, mixed, and spread evenly, it shall be thoroughly compacted to a minimum relative compaction of 95 percent.

3.07 EQUIPMENT INSTALLATION

A. Structural Fabrications

Conform to the AISC Code and Specification references in Article "Structural Steel Fabrications."
B. **Equipment**

Conform to reviewed Instruction Manuals. Employ skilled craftsmen experienced in installation of the types of equipment specified. Use specialized tools and equipment, such as precision machinist levels, dial indicators, gauges, and micrometers, as applicable. Produce acceptable installations free of vibration or other defects.

C. **Anchor Bolts**

Deliver bolts with templates or setting drawings and verify that bolts are correctly located before structural concrete is placed.

D. **Base and Bedplate Grouting**

Do not place grout until initial fitting and alignment of connected piping is completed. Level and align equipment on the concrete foundations, then entirely fill the space under base or bedplates with grout. Grout shall be non-metallic non-shrink type. Bevel exposed grout at 45 degree angle, except round exposed grout at horizontal surfaces for drainage. Trowel or point exposed grout to a smooth dense finish and damp cure with burlap for three days. When grout is fully hardened, remove jacking screws and tighten nuts on anchor bolts. Check the installation for alignment and level, and perform approved corrective work as required to conform to the tolerances given in the applicable Instruction Manual.

3.08 CONDUIT INSTALLATION

A. **General**

1. Contractor shall install conduit and electrical equipment in locations that will cause minimal interference with the maintenance and removal of mechanical equipment. Conduits and connections are shown schematically on the Drawings. Contractor shall run conduit in a neat manner parallel or perpendicular to walls and slabs, and wherever possible, installed together in parallel runs supported with Unistrut type support system. All conduits shall be installed straight and true with reference to the adjacent work.

2. Locations of conduit runs shall be planned in advance of the installation and coordinated with the mechanical work in the same areas, and shall not unnecessarily cross other conduits or pipe, nor prevent removal of nor block access to mechanical or electrical equipment.

3. Unless noted otherwise on the Drawings, buried conduit shall be installed with a minimum of 30" cover. Buried conduit shall be encased in red colored concrete
and mechanical consolidation of concrete shall be used per District Detailed Provisions, Section 03300. Conduit trench backfill shall be compacted to a minimum of 90 percent relative compaction.

Buried conduit shall be installed using approved spacers and cradles, properly supported/anchored and at sufficient intervals to prevent movement during encasement operations (maximum spacing of five feet). Where change in direction is required, long radius PVC-coated Rigid Galvanized Steel elbows shall be installed for GF, PF, and MSF conduits. Prior to installation of conductors in underground conduits, a testing mandrel not less than six (6) inches long and with a diameter 1/4 inch less than the conduit diameter shall be drawn through after which a stiff bristle brush of the proper size for the conduits shall be drawn through until the conduits are free of all sand and gravel. Test shall be accomplished prior to placing concrete.

4. Unless noted otherwise on the Drawings, conduit cast in concrete, under concrete slabs or footings, or through concrete walls, slabs, or masonry walls shall be PVC-coated Rigid Galvanized Steel. Unless noted otherwise on the Drawings, conduits shall be installed beneath concrete slabs, footings, or trenches, and shall be provided with a minimum of 6" clearance between conduit and bottom of concrete. Conduit backfill where installed beneath conduit shall be two (2) sack cement/sand slurry. Conduits shall be cast in concrete only where specifically shown on the Drawings.

5. Unless noted otherwise on the Drawings, buried conduit shall be PVC Schedule 40 Rigid Non-Metallic. Transition from PVC to PVC-coated Rigid Galvanized Steel shall be made at the horizontal leg of the buried conduit bend.

6. Unless noted otherwise on the Drawings, exposed or above grade conduit shall be PVC-coated Rigid Galvanized Steel.

7. Spare conduits shall be flush with the top of concrete slab or wall, and be provided with threaded cap and polyethylene pull rope with 100-pound (minimum) tensile strength.

8. All conduits shall be tightly sealed during construction by use of conduit plugs or "pennies" set under bushings. All conduit in which moisture or any foreign matter has collected before pulling conductors shall be cleaned and dried to the satisfaction of the District.

9. Conduits shall be securely fastened to cabinets, boxes, and gutters using locknuts (one inside and one outside enclosure) and an insulating bushing or specified insulated connectors. Grounding bushings or bonding jumpers shall be installed on all conduits terminating at concentric knockouts.
10. Where conduit is stubbed up through concrete slabs or footings into MCC/electrical panels, provide a minimum of 1-1/2" clearance between rebar and conduit and a minimum of 1" clearance between conduits. Adjust rebar spacing as necessary to a maximum of 1/2 the nominal spacing such that maximum rebar spacing does not exceed 1-1/2 times that specified. The total amount of reinforcing steel shall not be reduced.

11. Conduits shall terminate within the respective MCC/panel section, or in adjacent section if additional space is required. Contractor shall adjust location of conduit terminations based on the approved MCC/panel layout.

12. Underground pull boxes shall be sized and located as shown on the Drawings. Additional pull boxes shall be provided as necessary for conductor pulling (total bends between pull boxes shall not exceed 360°). Pull box sizes shown are minimum sizes. Depending upon the Contractor's duct bank configuration and pull box knockout area, larger size pull boxes may be necessary. Cost of additional or larger pull boxes shall be borne by Contractor. Pull boxes shall be precast concrete with required knockouts and concrete sump (broken out). Pull boxes shall be set on a minimum of 12" thick of 3/4" crushed rock. Unless noted otherwise, pull boxes shall be provided with one-piece, HDG steel, bolt down-type traffic covers with lifting holes. Pull boxes and covers shall be as manufactured by Jensen, or equal.

13. Contractor shall furnish and install conduit and conductors as shown on the Drawings, as shown on the control diagrams, and as listed on the "Schedule of Conduit and Conductors" drawing. Contractor is advised that not all conduit and conductors are listed in the schedule (particularly 120V lighting and receptacles) and that not all conduit and conductors listed in the schedule are specifically shown, labeled, or called out individually on other drawings.

B. Identification

Each and every conduit shall be provided with a 14-gauge brass labeling tag, 1-1/2 inch diameter, bearing 3/16 inch high die-stamped lettering with conduit designation shown on the Drawings. Each end of a conduit shall be provided with an identification tag. Each tag shall be securely attached to its conduit with a #10 single-jack brass chain or with brass fasteners. Each tag shall be provided with a hole for securing tag with chain or fasteners.

C. Rigid Non-Metallic Conduit
Unless noted otherwise on the Drawings, PVC conduit shall be used underground. PVC conduits shall not be run exposed. Risers to exposed or above grade locations shall be PVC-coated Rigid Galvanized Steel.

D. **PVC-Coated Rigid Galvanized Steel Conduit**

Threadless couplings will not be acceptable. Where necessary for connecting conduit, UL listed PVC-coated couplings shall be used. All ends and joints shall be reamed smooth after cutting.

E. **Supports**

Exposed conduit shall be supported with channel supports spaced per NEC requirements (8'-0" maximum spacing) and within 18" of couplings, bends, boxes, etc., unless otherwise shown on the Drawings.

F. **Termination and Joints**

1. Raceways shall be joined using specified couplings or transition couplings where dissimilar raceway systems are joined.

2. Conduit terminations exposed at weatherproof enclosures and cast outlet boxes shall be made watertight using approved connectors and hubs.

3. Conduit bodies (condulets) are not acceptable as enclosures for splices.

4. At all conduit terminations and boxes, conductors shall be protected by a fitting equipped with a plastic bushing having a smoothly rounded insulating surface.

3.09 **CONDUCTOR AND CABLE INSTALLATION**

A. **General**

1. Conductors shall not be installed in conduit runs until all work is completed for each individual conduit run. Care shall be taken in pulling conductors such that insulation is not damaged. UL approved pulling compounds shall be used.

2. Unless noted otherwise on the Drawings, all conductors or cables shall be installed in conduit or electrical enclosures.

3. All cables shall be installed and tested in accordance with manufacturer's requirements and warranty.
4. All field wiring to control panel(s), VFD(s), and to sections of the MCC shall terminate at terminal strips in the respective panels and buckets.

5. Contractor is advised that interconnecting wiring within and between lineups (assembled panels with common interconnecting horizontal wireways) of MCCs, distribution panels, MCPs, and control panels is not specifically listed or shown on the Drawings. Contractor is directed to control diagrams and RTU connection diagrams on the Drawings for these connections, which are subject to change according to approved shop drawings. Contractor shall install wiring for said connections within the bottom wireway of MCCs and panels.

6. No splices unless approved by District.

B. Identification

1. All branch-circuits shall be securely tagged, noting the purpose of each.

2. All conductors shall be numbered and labeled with vinyl wrap-around markers. Where more than two conductors run through a single outlet, each conductor shall be marked with the corresponding circuit number at the panelboard.

3. Conductors size #6 AWG and larger shall be color coded using specified phase color markers and identification tags.

4. All terminal strips shall have each individual terminal identified with specified vinyl markers.

5. Inside of all junction box cover plates shall be identified via felt-tip pen or decal label, denoting the panel and circuit numbers and voltage contained in the box.

6. All receptacles and switches shall be decal labeled on the plate, denoting the panel and circuit number.

C. Connections to Circuit Breakers, Switches, and Terminal Strips; Stranded Copper Conductors

1. #12 through 8 AWG: Conductor shall be terminated in locking tongue style, pressure type, compression lugs, unless clamp type connection for stranded conductor is provided with device.

2. #6 AWG and larger: Conductor shall be terminated in one-hole flat-tongue style, compression type lugs, or by connectors supplied by the manufacturer.
D. **Grounding**

Enclosures of equipment, raceways and fixtures shall be permanently and effectively grounded. A code-sized, copper, insulated green equipment ground shall be provided for all branch circuit and feeder runs. Equipment ground shall originate at panelboard ground bus and shall be bonded to all switch and receptacle boxes and electrical equipment enclosures. Ground terminals on receptacles shall be connected to the equipment grounding conductor by an insulated copper conductor.

E. **Status, Alarm, and Control Signal (IO)**

Status, alarm, and control signal (IO) conductors to and from the RTU terminal strips shall be identified at both ends using the District's labeling designation shown on Drawing E-4, "RTU Status/Alarm Signal Wiring Diagram" (i.e. 4-6, 5-2, etc.).

F. **Ultrasonic Level Control System**

Interconnecting cable between transducer and controller shall be supplied with unit, and shall be suitable for a maximum system length of 300'. Contractor shall verify length of cable required for each specific installation. Cable shall be installed in a single run with no splices. Cable shall be installed in continuously grounded PVC-coated Rigid Galvanized Steel conduit. Conduit shall be installed a minimum of 8' from 480V conduits.

3.10 **ELECTRICAL SERVICE INSTALLATION**

Contractor shall construct power service facilities in accordance with SCE requirements. Contractor shall furnish and install transformer slab, conduits, and grounding facilities. Contractor shall coordinate all work with SCE and verify slab and conduit locations with SCE prior to installation. All service equipment and panels shall be in strict accordance with SCE requirements.

3.11 **ELECTRICAL SHORT CIRCUIT COORDINATION AND ARC FLASH**

In accordance with District Detailed Provisions, Section 16040, Contractor shall field verify adjustment of all trip setting with the approved Coordination Study and shall provide arc flash and shock hazard warning labels.
3.12 CONCRETE CONSTRUCTION
All concrete construction shall be in accordance with District Specification Sections 03150, 03200, and 03300 and as specified hereinafter.

A. Formwork, Curing, and Backfill

1. Foundations

Cure per specifications. Wet well foundation shall cure a minimum of 7 days and achieve a minimum compressive strength of 2,500 psi prior to setting wet well RCP. Test cylinders shall be cured in field.

2. Suspended Slabs

Cure per specifications. Forms shall remain in place until a minimum of 14 days and 100 percent of design strength are reached. Test cylinders shall be cured in field.

B. Delineate Raised Concrete Slabs

Provide a 6" wide yellow paint stripe along the edge of all concrete surfaces that are higher than the surrounding finished surface to delineate changes in elevation.

3.13 PIPE INSTALLATION

A. Unless shown otherwise on the Drawings, minimum cover on below grade pipe shall be 30 inches.

B. Where groundwater is encountered, all VCP pipe shall be treated for absorption resistance per District’s Specifications.

C. All pipe zone bedding and trench backfill shall be per Standard Drawings SB-157, SB-158, and SB-159.

D. Pipe shall be installed in trench condition and as shown on District Standard Drawings. Backfill shall be completed including compaction tests prior to pressure testing. Backfill in pipe zone shall be compacted to minimum 90 percent compaction. Where pipe is located under slabs, all trench backfill shall be minimum 95 percent compaction.

E. Unless shown otherwise on the Drawings, piping where stubbed through slabs/foundations shall be wrapped with building paper or Protecto Wrap tape.
3.14 PIPE TESTING
All piping shall be hydrostatically tested per District Standards. Unless specified otherwise, piping shall be tested under a pressure 1-1/2 times the design operating pressure of the pipe. Testing against valves is not permitted. Contractor shall provide temporary bulkheads, skillets, and appurtenances as required for testing. All piping under concrete slabs/foundations shall pass pressure testing prior to placing concrete. No visible leakage is permitted in exposed piping.

3.15 FIELD TESTING AND COMMISSIONING OF EQUIPMENT
Prior to District’s acceptance, calibration and testing, pre-start-up, start-up, and 7-day live test shall be performed in accordance with these Specifications.

The Contractor shall furnish all labor, equipment, and material necessary to perform field testing and commissioning of equipment, including all related appurtenances. All costs for performing calibration and testing, pre-start-up, start-up, and 7-day live test shall be included in the Contract Price, and no extra payment will be made to the Contractor due to overtime, weekend, or holiday labor costs required to perform and complete same. Requirements specified in this Article are in addition to the demonstration and test requirements specified under other Sections of these Specifications.

A. Pre-start-up, start-up, and 7-day live test shall be performed by the Contractor in accordance with the approved procedure plans to demonstrate to District’s satisfaction that:

1. All components of the process systems defined herein and the entire lift station system are fully completed and operable.

2. All units, components, systems, and the entire lift station system operate with the efficiency, repeatability, and accuracy indicated and specified.

3. All components, systems, and the entire lift station conform to the Contract Documents and the reviewed shop drawings, samples, construction manuals, materials lists, and other reviewed submittals.

B. Prerequisite Conditions

Calibration and testing shall not commence for any equipment item or system until all related structures, piping, electrical, instrumentation, control, and like work has been installed and connected in compliance with the pertaining requirements specified elsewhere in the Specifications.

Pre-start-up, start-up, and 7-day live test shall not commence for any equipment item or system until calibration and testing has been completed as specified herein.
C. **Demonstration and Testing Materials**

Furnish materials, diesel fuel, and electrical power for all tests. Use potable water or reclaimed water to fill the lift station wet well. Furnish temporary facilities as required such as by-pass or re-circulation piping, diversions, storage, and similar facilities. Use procedures that conserve testing materials and avoid wastage, especially with respect to large quantities of fresh water and electrical power.

D. **Inspection and Supervision by Manufacturers**

Perform pre-start-up and start-up under continuous inspection by District. Technical representatives of the various equipment manufacturers shall be present for the pre-start-up and the start-up, shall examine their equipment at least twice, and shall supervise the start-up and adjustment procedures.

E. **Correction of Defects**

Immediately correct all defects and malfunctions disclosed by pre-start-up, start-up, and 7-day live test using approved methods and new materials for repairs as required. Upon District's recommendation, interruption time necessary for corrective work may be added to the specified total 7-day live test period.

F. **Acceptance**

Satisfactory completion and approval of required operational 7-day live test is one of the conditions precedent to District's acceptance of the work and does not constitute final acceptance.

Upon District's approval of required 7-day live test, Contractor shall check all equipment and confirm proper fluid levels.

G. **Manufacturer's Supervision and Installation Check**

Each equipment manufacturer shall furnish the services of an authorized representative specially trained and experienced in the installation of his equipment during pre-start-up and start-up to: (1) be present when the equipment is first put into operation, (2) inspect, check, adjust as necessary, and approve the installation, (3) repeat the inspection, checking, and adjusting until all trouble or defects are corrected and the equipment installation and operation are acceptable, (4) witness and supervise field testing and commissioning of equipment to the extent specified, and (5) prepare and submit to the District, upon successful completion of pre-start-up testing, the specified Manufacturer's Certificate of Proper Installation (see attached Exhibit A) confirming that all pumping units and emergency standby power generator set have been installed, inspected, checked, adjusted, and tested in accordance with the manufacturer's recommendations and requirements specified herein.
H. Calibration and Testing

Upon installation of all lift station facilities, Contractor shall perform calibration and testing. At a minimum, calibration and testing shall include the following for all facilities:

1. Meggering all motors and their conductors.
2. Meggering all conductors for 3-phase power.
3. Visually inspecting field wiring against approved shop drawings.
4. Checking for abnormalities that may have occurred during shipping or installation of all equipment and components including loose wiring, physical damage, or insecure mounting of components.
5. Complete all testing and labeling per Section 16040 prior to energizing any electrical panels or equipment.
6. Energizing all panels (only after testing per Section 16040).
7. Simulate all controls and equipment start, stop, and shutdown, including checking discrete signals locally at the panel and by jumpering remote devices at the field end to simulate signals (prior to actually operating equipment).
8. Testing all interlock and maintenance switches.
9. Checking analog signals by utilizing loop calibrator as required.
10. Calibrating all control instrumentation and monitoring equipment (flow, level, pressure, etc.).
11. Calibrating panel devices as required including timers and controllers.

I. Pre-Start-Up

1. General

Upon successful completion of calibration and testing, Contractor shall schedule the pre-start-up. A minimum of fourteen (14) days notice shall be provided to District prior to the pre-start-up. The pre-start-up shall be performed on one (1) day and Contractor's representative(s), District's Operations representative(s), Inspector, and Manufacturer's representative(s) shall attend the pre-start-up. The
pumps shall be tested through the force main. Contractor shall provide water for filling the wet-well, operate the pumps, and assure that the discharge piping and force main is completely filled prior to pre-start-up. All equipment shall be operated for a period of 30 minutes unless otherwise specified. All controls and alarm conditions shall be simulated. If the equipment does not perform in conformity with Contract Documents requirements, the Contractor will be required to remove, replace, and restore the equipment to full compliance with the Contract Documents at his expense.

As a minimum, during pre-start-up the Contractor shall demonstrate a complete and operational lift station as follows:

a) Response of equipment to appropriate manual or automatic controls, or combinations of both automatic and manual controls, shall be demonstrated to be correct and accurate. Where applicable, all components shall be tested for both manual and automatic operation. Where a component performs more than one function, every function shall be validated.

 (i) Pumping equipment shall respond accurately and reliably to liquid level from the wet well. Automatic alternation and back-up pump functions shall also be validated.

 (ii) Auxiliary equipment items such as alarm signals to remote telemetry, and like items shall respond accurately and reliably to every condition for which they are programmed, in the manner specified.

b) Functionality of all alarm and status lights.

c) Demonstrating uninterruptable power supply.

d) Demonstrating all control and monitoring features of all main control panels, local control panels, and PLCs in conjunction with associated equipment.

e) Measuring and recording voltage and amperage draw readings for all equipment motors under loaded conditions.

f) Testing all components of RTUs, including control systems.

g) Operating all equipment under all conditions and demonstrate all alarms, shutdowns, and operating modes.

h) Performance testing of each Pumping Unit through the discharge piping
i) Operation of Emergency Standby Power Generator Set.

Contractor shall refer to various Technical Specifications herein for additional specific equipment testing requirements.

2. Pumping Units

Pre-start-up testing for pumping units shall be performed utilizing potable or reclaimed water. The wet well shall be filled to pump operating level and discharge from the pumps shall be through the force main. Pump discharge valves shall be throttled to simulate the design operating condition. Contractor shall provide all required testing equipment to perform pumping unit start-up at no additional cost to the District.

Contractor shall provide all instrumentation to confirm pumping unit and electric motor performance, including calibrated test gauges for monitoring discharge pressure, and electrical monitoring equipment to measure current, voltage, power, kVA, and power factor.

Contractor shall record pumping unit flow, discharge pressure, motor voltage, and motor amperage, hourly throughout the test period.

The pumping units shall operate as specified without excessive noise, surging, cavitation, vortexing, vibration, or clogging, and without overheating of the bearings. Each pumping unit shall operate a minimum of 30 minutes.

All automatic and manual controls shall function in accordance with the specified requirements.

The Contractor shall perform the following tasks under the supervision of the pump manufacturer:

a) Completed pumping unit (pump and motor) shall receive a final field trim balance, as may be required, and vibration shall be checked and recorded. The vibration of all pumps shall be equal or less than the amplitude limits recommended in the Hydraulic Institute Standards and it shall be recorded at a minimum of four pumping conditions defined by the Engineer. All measurements shall be witnessed by the District. Vibration shall be measured at motor thrust bearing housing and at any other locations on pumping unit as directed by the District. Vibration shall be measured over the full range of the pump operating speed.
b) Each pump's performance shall be documented by obtaining concurrent readings showing motor voltage and amperage, pump flow rate, pump suction head, and pump discharge head. Readings shall be documented at a minimum of three pumping conditions, including the specified design point, to ascertain the actual pumping curves. Another test shall be run at shut-off head. Each power lead to the motor shall be checked for proper current balance.

c) Pumping units (pump and motor) shall perform substantially in conformance with the certified pump curves and the factory performance test results as adjusted for field conditions. Additionally, discharge from pump shall not exceed the design flow rate by more than 20%. If, in the opinion of the District, the equipment furnished does not perform in accordance with these Specifications, Contractor shall promptly make all necessary repairs or corrections so that the equipment fully complies with these Specifications. Contractor shall remove, restore, and replace the equipment if required at his expense. Factory performance tests, pre-start-up, and start-up testing shall be rerun if necessary at Contractor's expense.

J. Start-Up

Upon successful completion of pre-start-up and after receipt of all Manufacturer's Certificate of Proper Installation by the District, Contractor shall schedule the start-up. A minimum of three (3) days notice shall be provided to District prior to the start-up. The Contractor's representative(s), District's Operations representative(s), Engineering Consultant, Inspector, Design Engineer, and Manufacturer's representative(s) shall attend start-up.

All testing described for pre-start-up shall be repeated during start-up and the pumps shall be tested through the force main(s). Contractor shall provide water for filling the force main, operate the pumps, and assure that the force main(s) are completely filled prior to start-up.

K. 7-day Live Test

After successful completion of start-up, the Contractor shall participate in a live test of the lift station that shall encompass a 7-day period of trouble free operation. During the 7-day live test of the lift station, the lift station will be operated continuously under normal operating conditions. All alarms shall be transmitted to Contractor and District. The Contractor shall have personnel available within one hour to respond to any problems, and shall diligently pursue repair of the problem. If the District determines the problem to be major, then the District may instruct the Contractor to repeat the 7-day live test. The District may continue to repeat the test until 7 days of trouble-free operation are recorded.
Contractor shall provide potable water to fill the wet well at a constant rate as required to start the pumps 3 times per day (throughout the entire 7-day period) from the hose bib located at the wet well. All costs for potable water, power, and diesel fuel will be borne by the Contractor during this test period.

Contractor shall operate standby generator for two 4-hour periods (different days) and each pumping unit shall be selected in the "lead" position for a minimum of 24 hours during 7-day live test of the lift station.

Contractor shall maintain, and submit to District at the end of the 7-day live test, a log of all alarms and problems. The log shall include date of alarm or problem, description of alarm or problem, date of corrective action, and corrective action to fix alarm or problem.

3.16 IN-SERVICE CHECKS
As a part of the work, an in-service check of each system required to be validation tested shall be performed twice during the period of the Contractor's guarantee by qualified technical representatives of the various system manufacturers, including manufacturers of equipment and components within systems. Checks shall be detailed and complete, requiring not less than 2 hours at the site, and shall be performed under the observation and to the satisfaction of the District. All costs for in-service checks shall be included in the Contract Price.

A. Notification

The District shall be notified in writing at least 10 days before the performance of each in-service check. The proposed dates for checking shall be changed if required by the District's operations personnel.

B. Consultation

At the time of each in-service check, the manufacturer's technical representatives shall consult with the District to review the Operation and Maintenance Manual and the pertinent operational and maintenance problems encountered, and shall furnish technical advice and recommendations to the District.

C. Schedule

Initial in-service checks shall be performed approximately 6 months after final acceptance of the lift station. The second in-service check shall be performed within 60 days of the end of the Contractor's guarantee period.

D. Reports

A written report of each in-service check signed by the appropriate manufacturer or his representative, shall be delivered to the District within 10 days following the check. The
report shall describe the checking procedure in detail, and shall state all advice and recommendations.

3.17 INSTRUCTION
After all equipment has been installed, tested, and adjusted, and placed in satisfactory operating condition, each equipment manufacturer shall provide classroom instruction to District’s operating personnel in the use and maintenance of the equipment. Two (2) hours of instruction shall be provided unless otherwise specified. Contractor shall give the District formal written notice of the proposed instruction period at least two weeks prior to commencement of the instruction period. Scheduled training shall be at a time acceptable to the District and the manufacturer. During this instruction period, the manufacturer shall answer any questions from the operating personnel. The manufacturer's obligation shall be considered ended when he and the District agree that no further instruction is needed.

3.18 CLEANING
Upon successful completion of start-up and testing, Contractor shall thoroughly clean all equipment and piping. Contractor shall remove all traces of dirt, oil, grease, etc. Contractor shall clean all exposed parts of electrical installations including electrical panel and junction box interiors.

END OF SECTION 11210
MANUFACTURER’S CERTIFICATE OF PROPER INSTALLATION

OWNER: ___________________________ EQPT SERIAL NO: ___________________________
EQUPT TAG NO: ___________________________ EQPT/SYSTEM: ___________________________
PROJECT NO: ___________________________ SPEC. SECTION: ___________________________

I hereby certify that the above-referenced equipment/system has been:

(Check Applicable)

☐ Installed in accordance with Manufacturer's recommendations.
☐ Inspected, checked, and adjusted.
☐ Serviced with proper initial lubricants.
☐ Electrical and mechanical connections meet quality and safety standards.
☐ All applicable safety equipment has been properly installed.
☐ System has been performance tested, and meets or exceeds specified performance requirements. (When complete system of one manufacturer)

Comments: __
__
__

I, the undersigned Manufacturer's Representative, hereby certify that I am (i) a duly authorized representative of the manufacturer, (ii) empowered by the manufacturer to inspect, approve, and operate his equipment and (iii) authorized to make recommendations required to assure that the equipment furnished by the manufacturer is complete and operational, except as may be otherwise indicated herein. I further certify that all information contained herein is true and accurate.

Date: ___________________________
Manufacturer: ___________________________
By Manufacturer’s Authorized Representative: ___________________________

(Authorized Signature)

491-53
TABLE 1

RELATED DISTRICT STANDARD DRAWINGS

Refer to the latest Standard Drawings located at the following web site

<table>
<thead>
<tr>
<th>Standard Dwg. No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-286B</td>
<td>Trench Backfill (for PVC forcemain)</td>
</tr>
<tr>
<td>B-590</td>
<td>5/8" Meter Service Connection, 1" Copper Tubing</td>
</tr>
<tr>
<td>B-590A</td>
<td>5/8" Service Connection, 1" Copper Tubing</td>
</tr>
<tr>
<td>B-591</td>
<td>1" Meter Service Connection, 1" Copper Tubing</td>
</tr>
<tr>
<td>B-591A</td>
<td>1" Service connection, 1" Copper Tubing</td>
</tr>
<tr>
<td>B-597</td>
<td>Backflow Prevention Assembly Installation Diagram</td>
</tr>
<tr>
<td>B-656</td>
<td>Location Wire Installation</td>
</tr>
<tr>
<td>B-663</td>
<td>Standard Restraint (Tee, Dead End, Bend)</td>
</tr>
<tr>
<td>B-665</td>
<td>Guard & Marker Posts</td>
</tr>
<tr>
<td>D-672</td>
<td>Chain Link Fence Details</td>
</tr>
<tr>
<td>SB-08</td>
<td>Locking Type Manhole Cover & Frame</td>
</tr>
<tr>
<td>SB-30</td>
<td>Reinforced Precast Shallow Manhole</td>
</tr>
<tr>
<td>SB-53</td>
<td>Precast Reinforced Concrete, 48" & 60" I.D. Manhole</td>
</tr>
<tr>
<td>SB-56</td>
<td>Precast Non-Reinforced Concrete, 48" I.D. Manhole</td>
</tr>
<tr>
<td>SB-61</td>
<td>Manhole Cover & Frame</td>
</tr>
<tr>
<td>SB-157</td>
<td>Pipe Zone Bedding for Sewer Pipe</td>
</tr>
<tr>
<td>SB-158</td>
<td>Trench Backfill for Sewer Pipe</td>
</tr>
<tr>
<td>SB-159</td>
<td>Classification of Pipe Zone Bedding for Sewer Pipe</td>
</tr>
<tr>
<td>- - -</td>
<td>Sewer Guideline for Manhole Sizing *</td>
</tr>
</tbody>
</table>

*Refer to the latest Guideline Standards located at the following web site:

MAINTENANCE BOND
FOR PUMPING EQUIPMENT
(By Developer)

KNOW ALL MEN BY THESE PRESENTS, that we, ____________________________, as Surety, hereinafter called Surety, are held and firmly bound unto Eastern Municipal Water District, hereinafter called District, in the penal sum of $______, for the payment whereof (Developer) and Surety bind themselves, their heirs, executors, administrators, successors, and assigns, jointly and severally, firmly by these present.

WHEREAS, Developer has by written agreement, dated _____ entered into a contract with the District for ____________________________ in accordance with the General Conditions, project drawings and specifications which contract is by reference incorporated herein, and make a part hereof, and is referred to as the contract.

NOW, THEREFORE, the condition of the obligation is such that, if Developer shall remedy any defects due to faulty materials or workmanship which shall appear within a period of 2 years from the date the project is accepted as provided for in the contract, then this obligation is to be void, otherwise to remain in full force and effect.

PROVIDED, HOWEVER, that the District shall give Developer and Surety notice of observed defects with reasonable promptness.

Signed and sealed this _____ day of _____, 20____

__ (SEAL) __ (SEAL)

Developer Surety

__

Title

Title
[Page Left Intentionally Blank]
EASTERN MUNICIPAL WATER DISTRICT
RIVERSIDE COUNTY, CALIFORNIA

DRAWING INDEX

VICIENCY MAP

LOCATION MAP

SMALL SEWAGE LIFT STATION STANDARDS