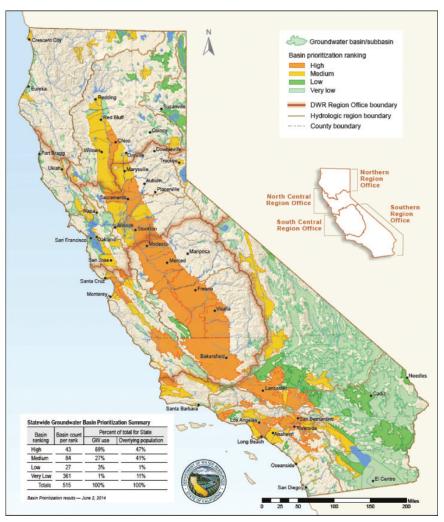


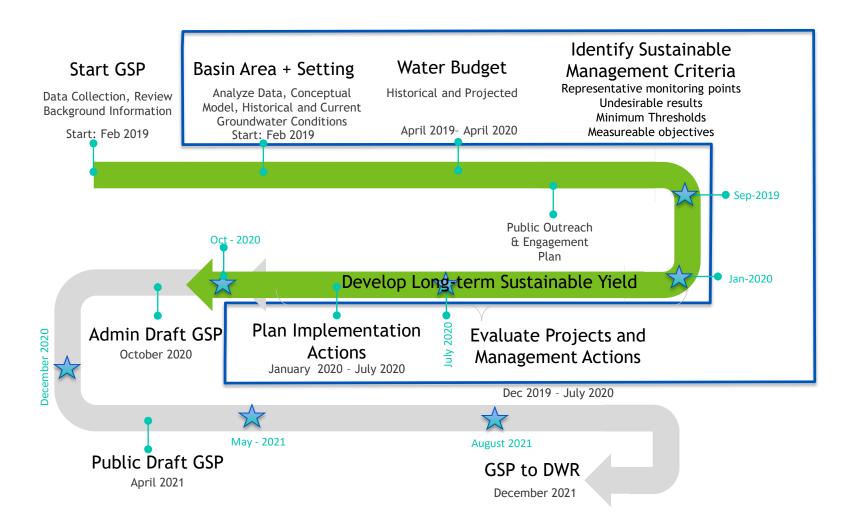
West San Jacinto Groundwater Sustainability Agency (GSA) Development of the West San Jacinto Groundwater Sustainability Plan (GSP) – October 14, 2020

Rachel Gray October 14, 2020

Introduction

- Project Overview
 - What is the Sustainable Groundwater Management Act?
 - What is a Groundwater Sustainability Plan?
- Update on the Groundwater Sustainability Plan Development
 - Historical, Current, and Projected Baseline Water Budgets for the West San Jacinto GSA Area
 - Minimum Thresholds and Measurable Objectives for Groundwater Quality
 - Undesirable Results
 - Projects and Management Actions
- Timeline and Next Steps
- SGMA Webpage
- Feedback
- Questions and Answers ² | emwd.org




Project Overview

What is the Sustainable Groundwater Management Act?

- Signed September 16, 2014
- Effective January 1, 2015
- Requires:
 - Formation of groundwater sustainability agencies (GSAs) for high and medium priority groundwater basins
 - Preparation of groundwater sustainability plans (GSPs) by 2022
 - Achieve sustainability within 20 years of plan adoption
- "A central tenet of these bills is the recognition that groundwater management is best accomplished locally."
 - Governor Edmund G. Brown Jr.

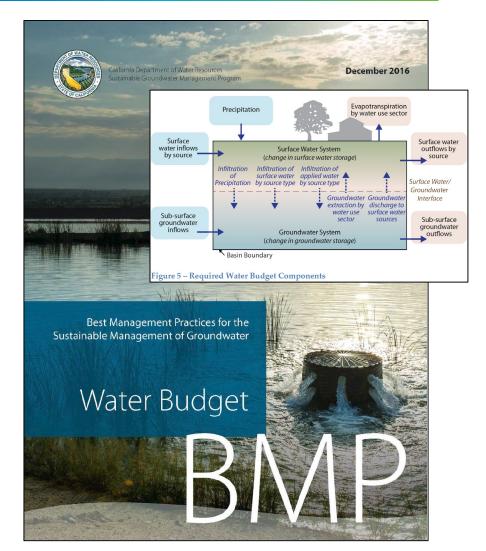
San Jacinto Groundwater Basin

Water Budgets for GSP Development

Ali Taghavi, Ph.D., P.E. Project Manager

Agenda

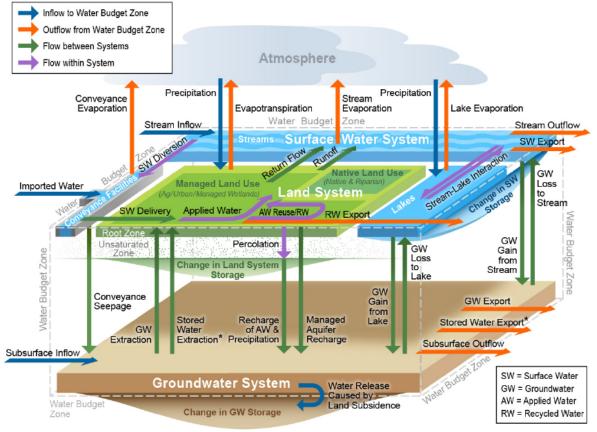
- Water Budget Background
- Water Budget Development for:
 - Historical Conditions
 - Current Conditions
 - Projected Baseline Conditions



Water Budgets Background

DWR's Water Budget Best Management Practices

- Water Budgets provide an accounting and assessment of the total annual volume of groundwater and surface water entering and leaving the basin.
- Water budget information shall be reported in tabular and graphical form.
- Water Budgets should provide an understanding of historical and projected:
 - hydrology
 - water demand
 - water supply
 - land use
 - population
 - climate change
 - groundwater and surface water interaction
 - subsurface groundwater flow



DWR's Water Budget Handbook

- The Water Budget Handbook is not prescriptive in what methods an agency should apply and does not impose requirements as to how water budgets should be developed for any compliance purposes.
- It serves as a technical resource that provides information on a suite of methods and data sources.

Figure 1-1 Total Water Budget Schematic

Water Budget: Defining Time Frames

Historical

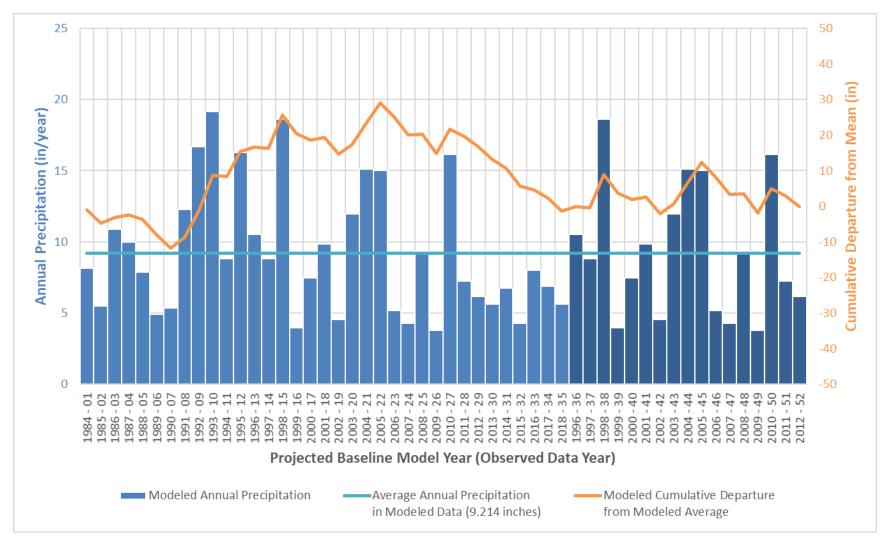
Uses historical information for hydrology, precipitation, water supply and demand, and land use during a minimum of 10 years.

Current Conditions

Holds constant the most recent or "current" data on population, land use, year type, water supply and demand, and hydrologic conditions.

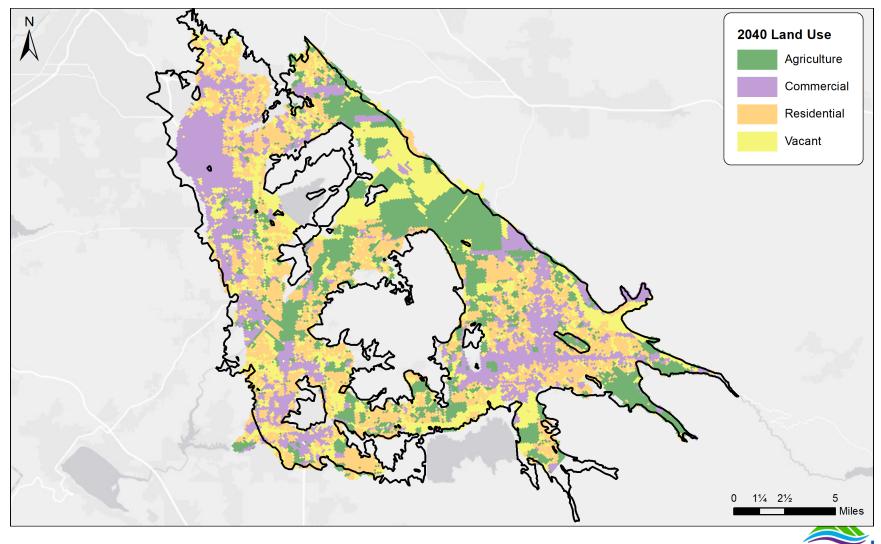
Projected Conditions

Uses a 50-year projected planning horizon to estimate population growth, land use changes, water supply conditions, climate change, etc.

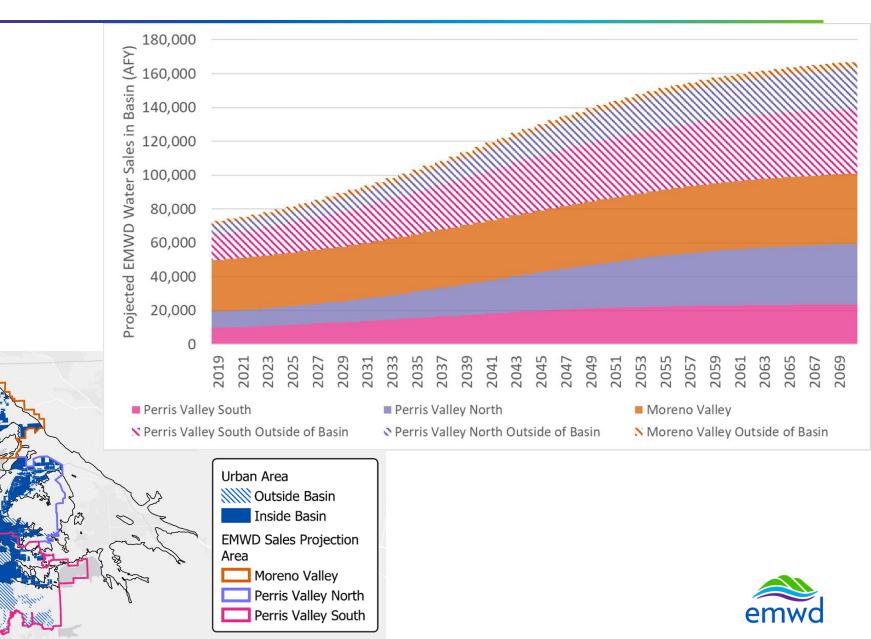

Water Budget Assumptions

- Period of Analysis
 - Historical Conditions: WY 1984 2012
 - Current Conditions: WY 2013-2018
 - Projected Conditions: WY 2019-2072
- Land Use Conditions
- Recharge Sources
 - Precipitation
 - Irrigation
 - EMWD water sales
 - Sub-agency water sales
 - Reclaimed Water facilities
 - Recycled water sales

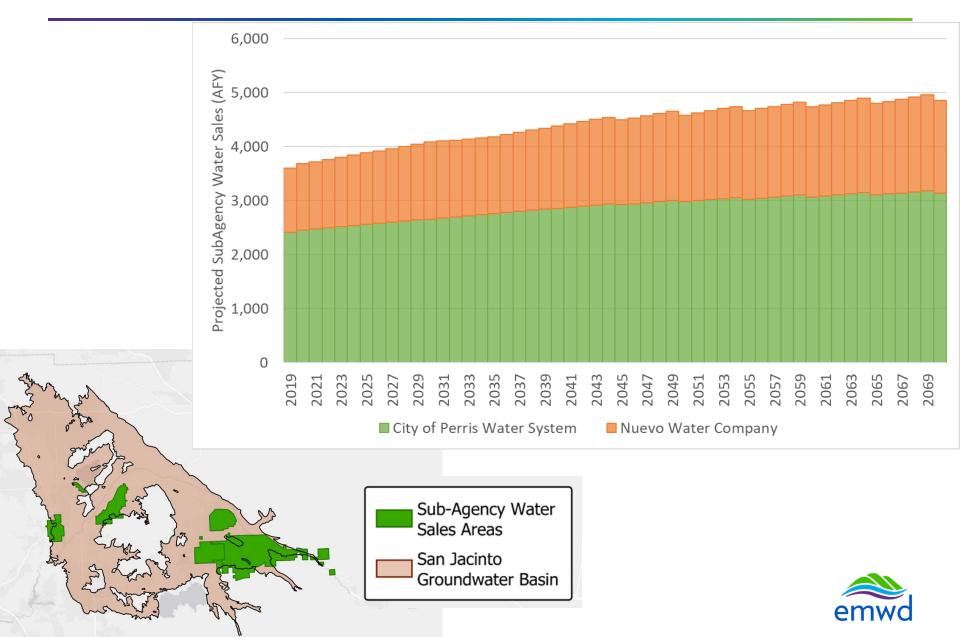
- Groundwater Productions
- Projected Baseline Conditions
 Include Additional Planned
 Projects:
 - Perris North Contamination
 Remediation Program
 - Perris South Desalter II
 - DWR's Lake Perris Seepage Recovery



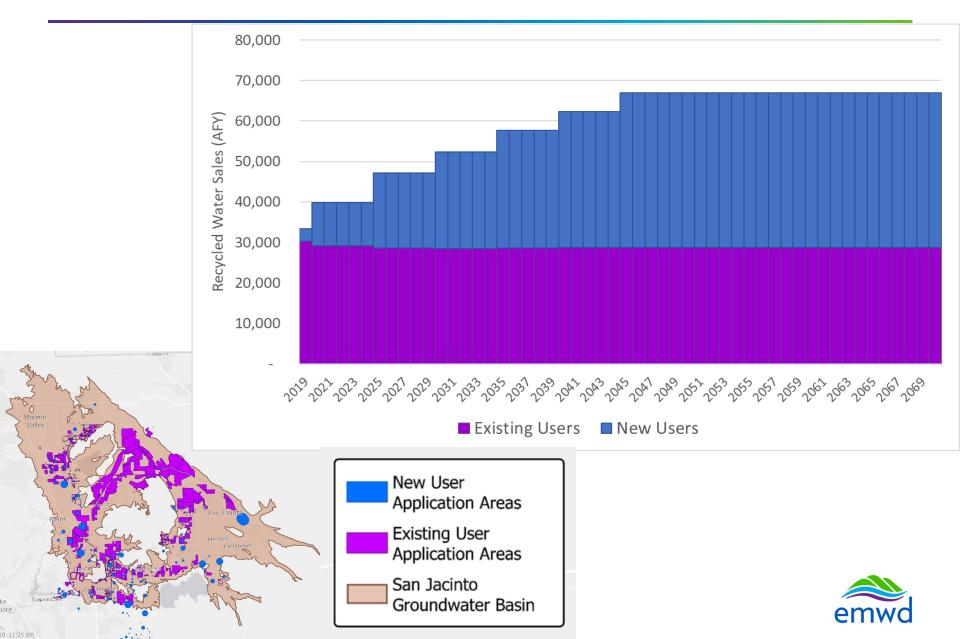
Precipitation Conditions

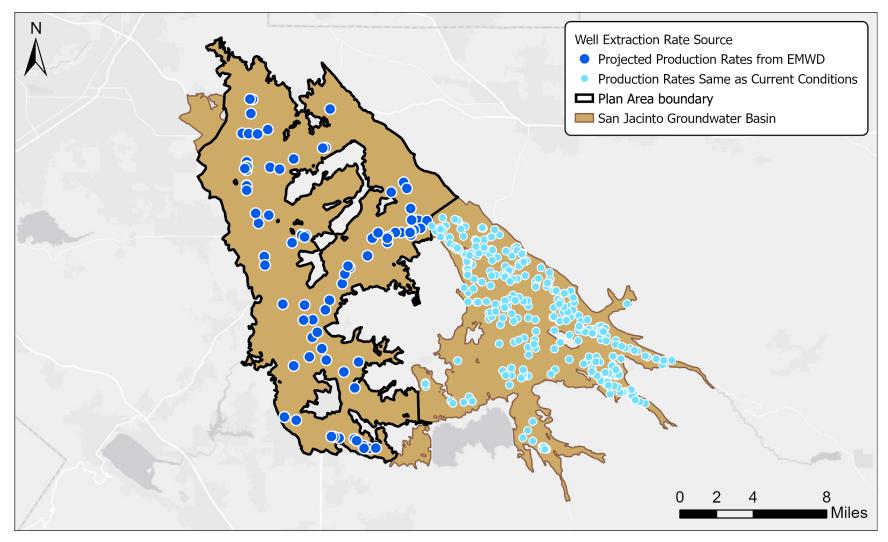


Land Use Conditions

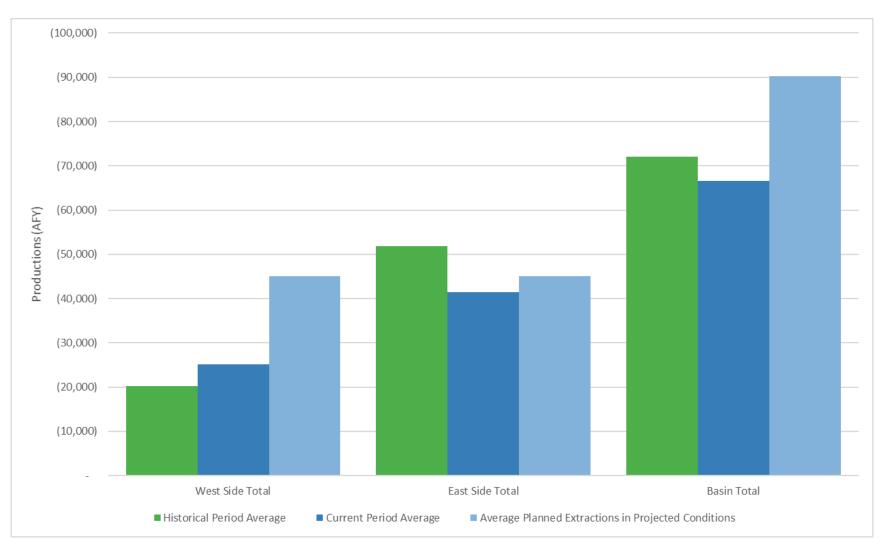


emwd


EMWD Water Sales Deliveries

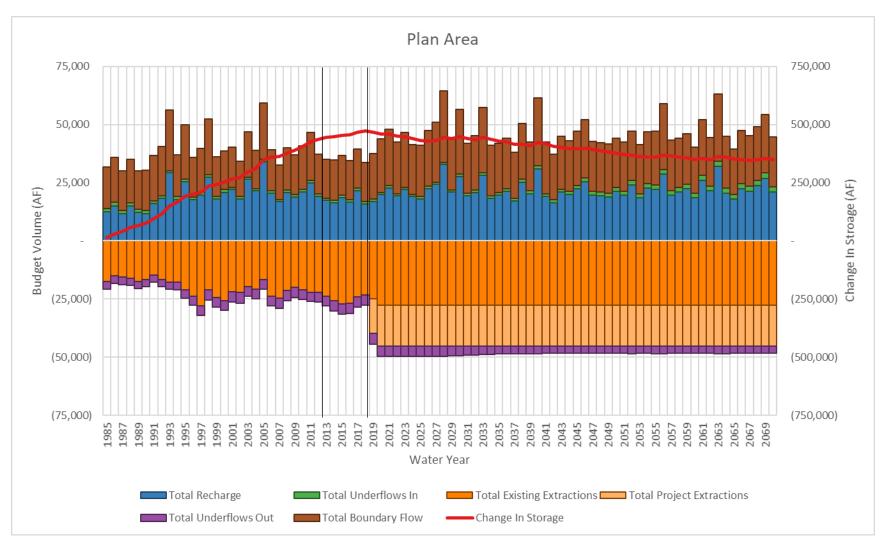

Sub-Agency Water Sales

Recycled Water Sales Deliveries



Groundwater Production Locations

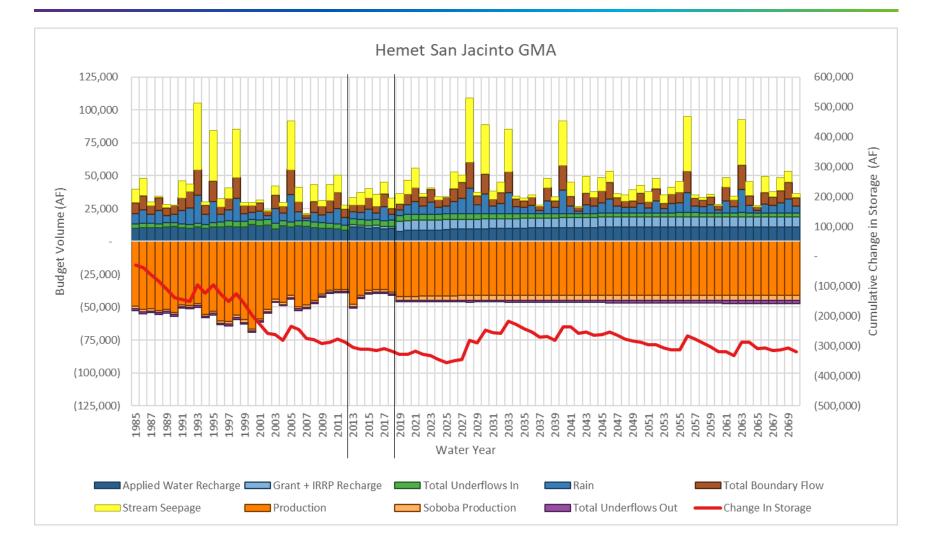
Groundwater Production in the Basin



Plan Area Water Budgets

Plan Area Summary

Plan Area Summary


Flow	Historical Period Average WY 1985-2012 (AFY)		Current Condition Average WY 2013-2018 (AFY)		Updated Projected Baseline Average WY 2019-2070 (AFY)	
EMWD Sales Irrigation Rain Recharge Reclaimed Ponds Recycled Water Sales Subagency Sales	3,169 1,504 8,718 4,822 1,032 152	19,397	2,539 577 5,462 7,623 954 210	17,365	4,472 436 7,090 8,177 1,164 264	21,603
Stream Seepage	307	307	300	300	306	306
From Hemet North Underflows In From Hemet South From Upper Pressure	657 253 219	1,128	577 247 191	1,015	858 501 157	1,515
From Sun City Area Lake Perris Right Dam Seepage Boundary Flows Lake Perris Right Dam Seepage Lake Perrs Native Underflow	889 585 3,400 3,201	18,760	1,098 585 3,400 3,201	16,932	1,160 585 7,500 3,201	22,876
Mountain Front Recharge	10,685		8,647		10,429	
Total Average Annual Inflow	39,593		35,612		46,299	
To Hemet North Underflows Out To Hemet South To Upper Pressure	103 3 3,717	3,823	0 2 4,368	4,370	1 6 3,547	3,554
Toe Drain LPSRW EGETS Wells Perris North Project Perris South Desal Project Existing Wells	3,400 0 0 0 0 16,835	20,235	3,400 0 0 0 0 21,744	25,144	0 7,500 241 6,717 2,985 27,652	45,096
Total Average Annual Outflow	24,058		29,514		48,650	
verage Annual Change in GW Storage			6,098		(2,351)	

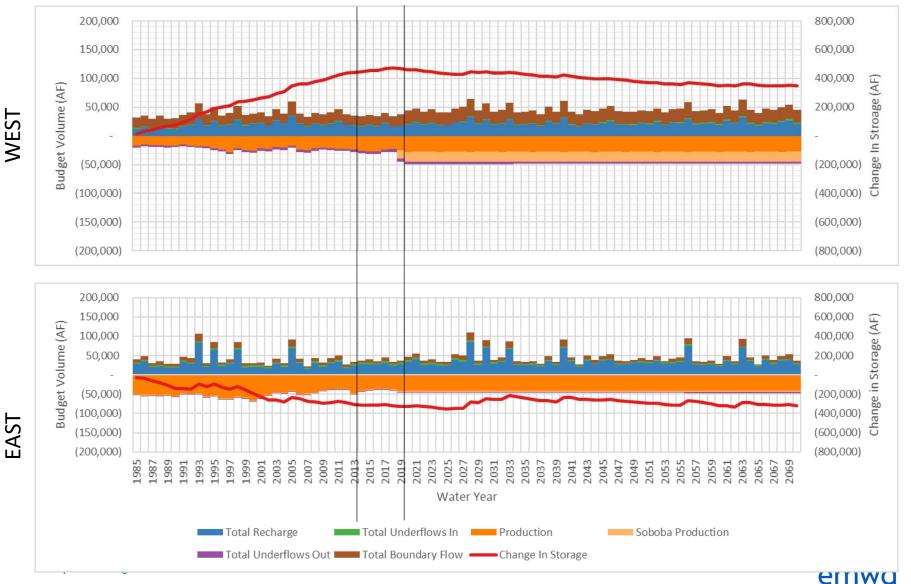
Hemet-San Jacinto Water Management Area Water Budgets

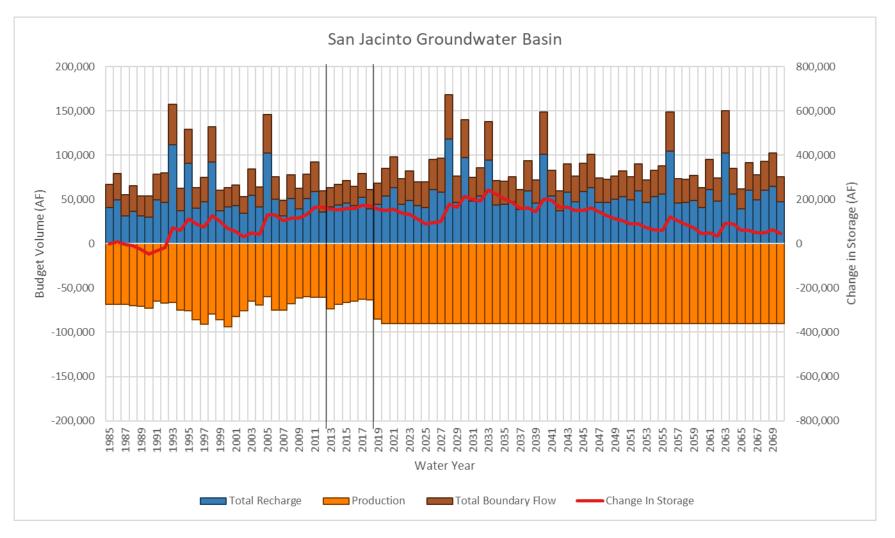
Hemet-San Jacinto Water Management Area

Hemet-San Jacinto Water Management Area

Flow	Historical Period Average WY 1985-2012 (AFY)		Current Condition Average WY 2013-2018 (AFY)		Updated Projected Baseline Average WY 2019-2070 (AFY)	
Applied Water Recharge Recharge Rain Grant + IRRP Recharge	10,677 8,962 0	19,639	10,305 6,548 1,727	18,579	10,326 7,451 7,500	25,276
Steam Seepage	10,833	10,833	7,915	7,915	9,489	9,489
From Menifee Underflows In From Lower Pressure From Lakeview	3 3,717 103	3,823	2 4,368 0	4,370	6 3,547 1	3,554
Boundary _{Mountain} Front Recharge Flows	8,992	8,992	6,570	6,570	8,258	8,258
Total Average Annual Inflow	43,287		37,435		46,578	
To Perris South Underflows Out To Lakeview	253 219 657	1,128	247 191 577	1,015	501 157 858	1,515
EMWD LHWMD City of Hemet City of San Jacinto Extractions Soboba (From Natural Recharge) Soboba Agency Unused Soboba Private Production	13,740 9,524 4,344 2,976 1,469 224 0 19,559	51,834	7,199 9,355 3,672 2,637 1,491 167 4,287 12,581	41,387	7,303 7,434 4,542 3,004 1,500 2,435 5,065 13,800	45,083
Total Average Annual Outflow	52,962		42,403		46,598	
Average Annual Change in GW Storage	(9,675)		(4,968)		(21)	

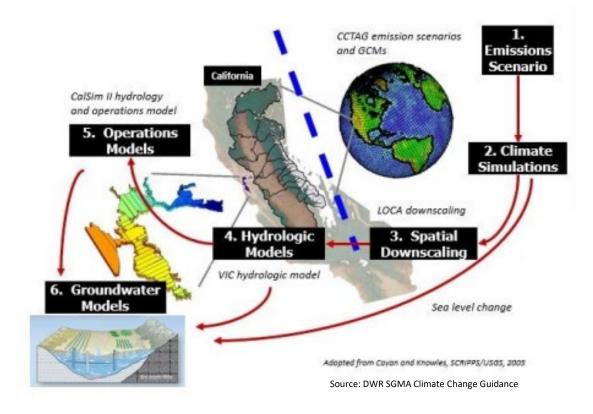
25 | emwd.org


emwd

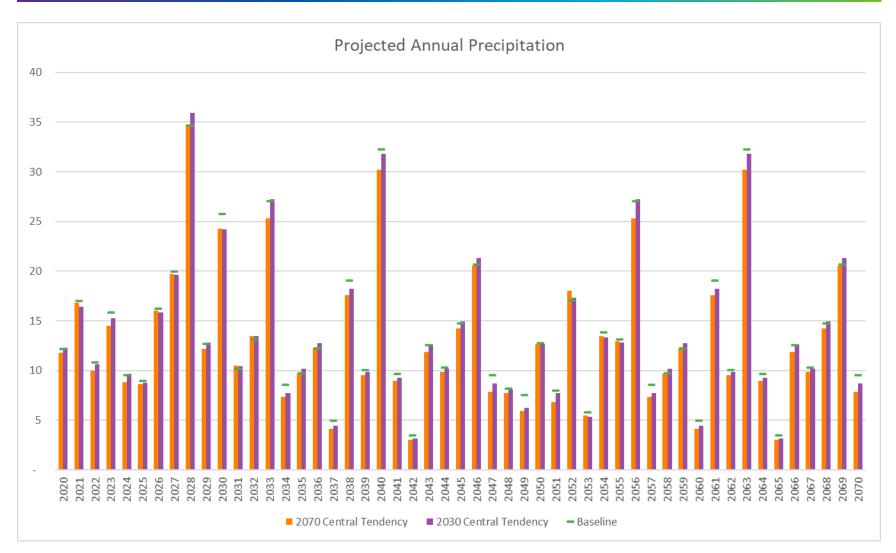

Total Water Budget

Total Water Budget – Parts of the Whole

Total Water Budget

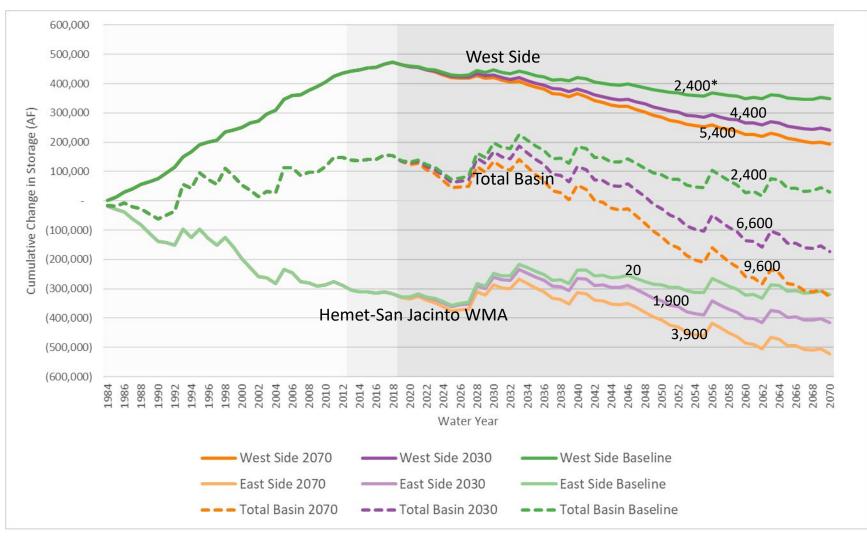

Total Water Budget

Flow		Historical Period Average WY 1985-2012 (AFY)		Current Condition Average WY 2013-2018 (AFY)		Updated Projected Baseline Average WY 2019-2070 (AFY)		
Recharge	Sales Irrigation Rain Artificial	9,729 5,121 17,680 6,506	39,037	11,408 2,583 12,010 9,943	35,944	13,669 2,398 14,540 16,271	46,879	
Stream Seepage		11,140	11,140	8,215	8,215	9,795	9,795	
Boundary Flows	From Sun City Area Lake Perris Right Dam Seepage Lake Perris Right Dam Seepage Lake Perrs Native Underflow Mountain Front Recharge	889 585 3,400 3,201 19,678	27,752	1,098 585 3,400 3,201 15,218	23,502	1,160 585 7,500 3,201 18,688	31,134	
Total Average	Total Average Annual Inflow		77,929		67,661		87,807	
Production	Toe Drain LPSRW EGETS Wells Perris North Project Perris South Desal Project Soboba HSJ Mgmt Area Production West Side Basin Production	3,400 0 0 0 1,692 50,142 16,835	72,069	3,400 0 0 0 1,657 39,730 21,744	66,531	0 7,500 241 6,717 2,985 3,935 41,148 27,652	90,179	
Total Average Annual Outflow		72,069		66,531		90,179		
Average Annua	Average Annual Change in GW 5,860 5,860		1,130		(2,371)			


Climate Change Data Downscaling to Groundwater Model Applications

- Data from Global Climate Models (GCMs) are downscaled to a regional planning scale
- Downscaled data is available in pre-existing datasets

Changes to Precipitation



Category	Projected Baseline	2030 Central Tendency	2070 Central Tendency
% of Baseline Precipitation	100%	98%	95%
Average Annual Modeled Precipitation	9.17"	8.99″	8.71″
Difference in Annual Modeled Precipitation	-	-0.18"	-0.46″

Projected Change in GW Storage – Baseline and Climate Change Scenarios

* Numbers show the long-term projected annual rate of decline in GW Storage (AF/Yr)

Minimum Thresholds and Measurable Objectives for Groundwater Quality

Minimum Thresholds Under SGMA

- From the SGMA Emergency Regulations:
 - "Each Agency in its Plan shall establish minimum thresholds that quantify groundwater conditions for each applicable sustainability indicator at each monitoring site or representative monitoring site established pursuant to Section 354.36 (Representative Monitoring)" (23 CCR § 354.28. Minimum Thresholds)
 - "An Agency may establish a representative minimum threshold for groundwater elevation to serve as the value for multiple sustainability indicators where the Agency can demonstrate that the value is a reasonable proxy." (23 CCR § 354.28(d))

SUSTAINABILITY INDICATORS

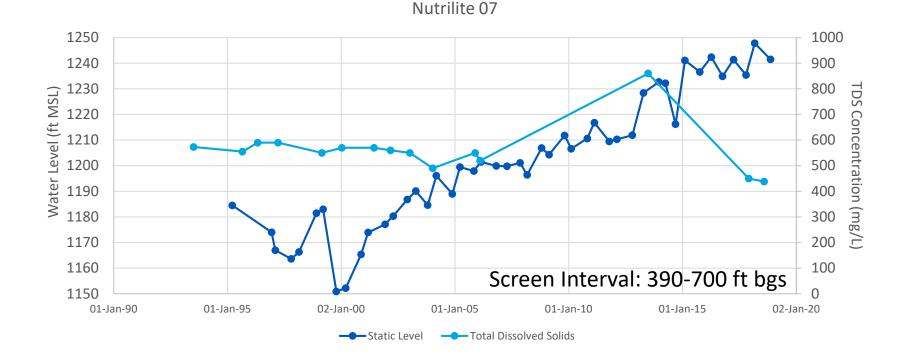
Groundwater elevation MT = Water Level

Groundwater in storage MT = Water Level

Land Subsidence MT = Water Level

Water Quality MT = TDS Concentration

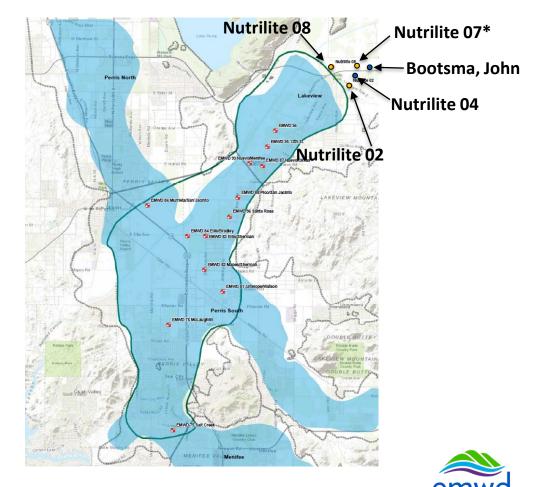
Interconnected surface water and groundwater – Not applicable


Seawater Intrusion – Not

applicable

Water Levels Not Appropriate Proxy

Water level does not correlate with concentration



Water Quality General Undesirable Result

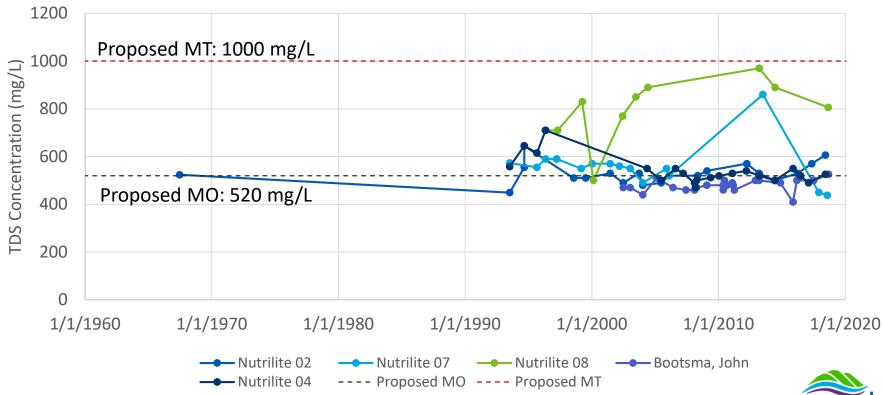
- Ongoing northeast migration of brackish water in the Lakeview GMZ would be an undesirable result
 - Use 1000 mg/L TDS plume as indicator of extent of brackish water
 - Sentinel Well Perris II ROTF MRP
 - Proposed Additional GSP
 Representative
 Monitoring Point Water
 Quality ONLY
 - * Nutrilite 7 is also a representative monitoring point for water levels

Water Quality Representative Monitoring Points

- Use Perris II Sentinel Wells: Nutrilite 02, 07*, and 08 as representative monitoring points for water quality
 - Already incorporated into existing water quality monitoring plan
- Also include wells: John Bootsma, and Nutrilite 04 as additional representative monitoring points for water quality
 - Wells screened across representative aquifer

•	Provide additional understanding of water quality trends
---	--

RMP	Top of Screen (ft bgs)	Bottom of Screen (ft bgs)	Maximum TDS Concentration (mg/L)	Maximum TDS Concentration YEAR	Mann-Kendall Trend
Nutrilite 07*	390	700	860	2013	Decreasing
Nutrilite 02	-	-	645	1994	No Trend
Nutrilite 04	170	480	710	1996	Decreasing
Nutrilite 08	-	-	970	2013	Increasing
Bootsma, John	350	650	526	2018	Increasing


* Nutrilite 7 is also a representative monitoring point for water levels

Water Quality Minimum Threshold/ Measurable Objective

- Propose 1000 mg/L TDS as the MT for these wells
- Propose 520 mg/L TDS as the MO
 - This corresponds with the basin plan objective for Lakeview/ Hemet North

Proposed Representative Monitoring Point TDS Concentrations

Minimum Thresholds

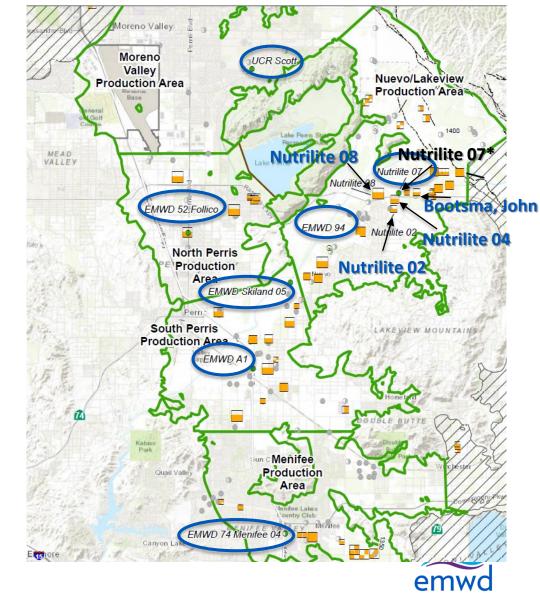
- Followed DWR guidance to propose water level, groundwater in storage, and land subsidence minimum thresholds at each representative monitoring point
- Need to define minimum threshold for groundwater quality

RMP	Proposed MT Water Levels (ft MSL)	Proposed MT Groundwater In Storage (ft MSL)	Proposed MT Land Subsidence (ft MSL)	Proposed MT Groundwater / Surface Water Interaction	Proposed MT Seawater Intrusion	Proposed MT Water Quality (TDS – mg/L)
EMWD 74	1200	1200	1200	NA	NA	NA
EMWD A1	1200	1200	1200	NA	NA	NA
EMWD Skiland 05	1200	1200	1200	NA	NA	NA
EMWD 94	1200	1200	1200	NA	NA	NA
Nutrilite 07	1100	1100	1100	NA	NA	1000
EMWD 52	1200	1200	1200	NA	NA	NA
UCR Scott	1300	1300	1300	NA	NA	NA
Nutrilite 02	NA	NA	NA	NA	NA	1000
Nutrilite 04	NA	NA	NA	NA	NA	1000
Nutrilite 08	NA	NA	NA	NA	NA	1000
Bootsma, John	NA	NA	NA	NA	NA	1000

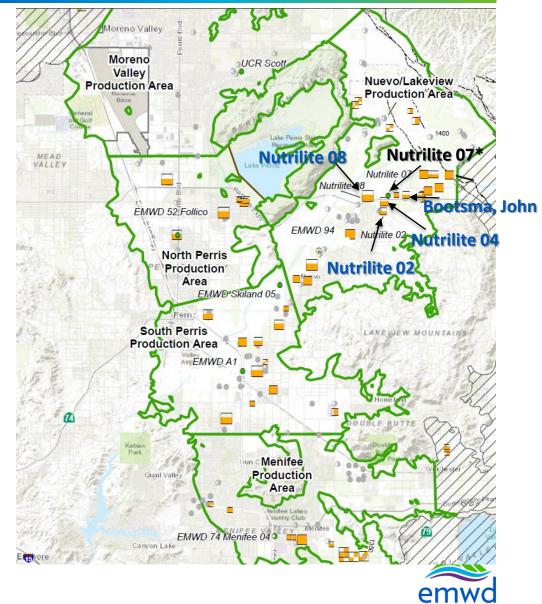
Measurable Objectives

- Followed DWR guidance to propose water level, groundwater in storage, and land subsidence measurable objectives at each representative monitoring point
- Need to define measurable objective for groundwater quality

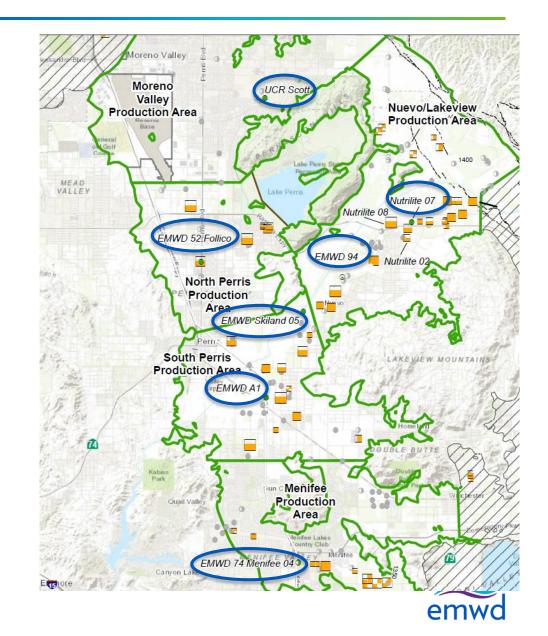
RMP	Proposed MO Water Levels (ft MSL)	Proposed MO Groundwater In Storage (ft MSL)	Proposed MO Land Subsidence (ft MSL)	Proposed MO Groundwater / Surface Water Interaction	Proposed MO Seawater Intrusion	Proposed MO Water Quality (TDS – mg/L)
EMWD 74	1250	1250	1250	NA	NA	NA
EMWD A1	1250	1250	1250	NA	NA	NA
EMWD Skiland 05	1250	1250	1250	NA	NA	NA
EMWD 94	1250	1250	1250	NA	NA	NA
Nutrilite 07	1150	1150	1150	NA	NA	520
EMWD 52	1250	1250	1250	NA	NA	NA
UCR Scott	1350	1350	1350	NA	NA	NA
Nutrilite 02	NA	NA	NA	NA	NA	520
Nutrilite 04	NA	NA	NA	NA	NA	520
Nutrilite 08	NA	NA	NA	NA	NA	520
Bootsma, John	NA	NA	NA	NA	NA	520
1						emwa



Undesirable Results


Undesirable Results

- From the SGMA Emergency Regulations:
 - "Undesirable results occur when significant and unreasonable effects for any of the sustainability indicators are cause by groundwater conditions occurring throughout the basin."
 - The criteria used to define undesirable results "shall be based on a quantitative description of the *combination* of minimum threshold exceedances that cause significant and unreasonable effects in the basin" (emphasis added).


Undesirable Results: Water Quality

- Proposed quantification of undesirable results for water quality:
 - 3 of 5 wells have concentrations >1000 mg/L for 2 consecutive annual water quality sampling events

Undesirable Results: Water Levels

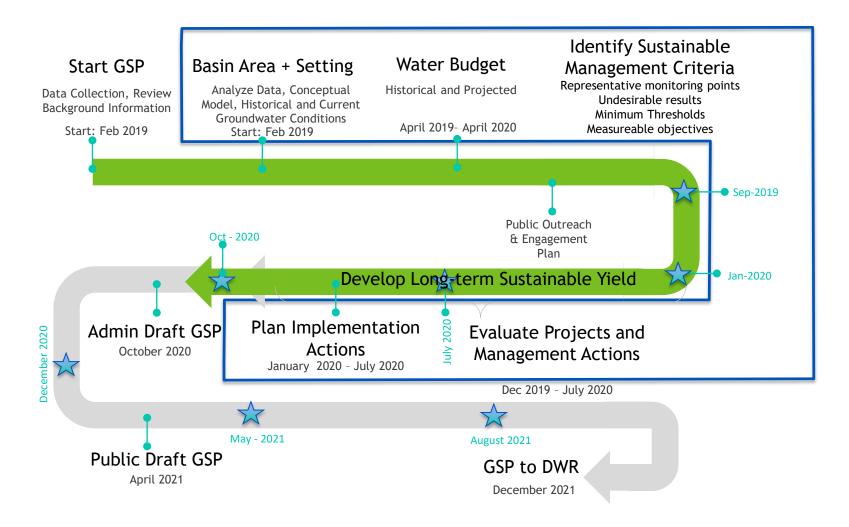
- Proposed quantification of undesirable results for water levels:
 - >30% of RMPs (for WL) have water levels below the minimum threshold for 2 consecutive spring monitoring events

Projects and Management Actions

Projects and Management Actions

- Projects and management actions shall be commensurate with the level of understanding of the basin setting, based on the level of uncertainty and data gaps ((23 CCR § 350.4(d))
- Each Plan shall include a description of the projects and management actions the Agency has determined will achieve the sustainability goal for the basin, including projects and management actions to respond to changing conditions in the basin. ((23 CCR § 354.44(a))
- Funded projects already included in baseline understanding of basin and incorporated in groundwater model of future conditions
- What projects and/ or management actions would be undertaken to address "changing conditions in the basin" or unanticipated declines in groundwater elevation and storage?

Projects and Management Actions


- Adjust pumping as needed to meet water level and/ or water quality objectives
 - Increase pumping in select areas to influence groundwater gradient to better control migration of non-point sources of contamination
 - Shift production away from localized areas that are experiencing over-pumping
 - Review spring water levels relative to minimum thresholds at representative monitoring points to determine if this is necessary
 - Reduce overall production if shifting production is unsuccessful at meeting water level objectives
- Assess feasibility of recycled water delivery to private producers in the Menifee production area to offset their groundwater production
 - Only applies if water levels in Menifee drop below minimum thresholds and shifting production does not result in groundwater elevation recovery
- Conduct additional investigations and/ or technical studies
 - Collect additional data if necessary to support additional studies
 - Refine understanding of the basin hydrogeology
 - Assess controls on water quality or water levels based on revised understanding

Timeline and Next Steps

GSP Development Process

Next Steps

- EMWD and consultant team will continue to work together to:
 - Prepare the public draft GSP
- Next stakeholder advisory group meeting scheduled for April 2021

Questions